Physical and Mathematical Sciences

2019, **53**(1), p. 13-16

Mathematics

AUTOMORPHISMS OF FREE BURNSIDE GROUPS OF PERIOD 3

H. A. GRIGORYAN *

Chair of Mathematical Cybernetics RAU, Armenia

We have proved that any automorphism of the free Burnside group B(3) of period 3 and an arbitrary rank is induced by an automorphism of the free group of the same rank.

MSC2010: 20F50, 20F28, 20D45.

Keywords: automorphism, finitary lifting property, free Burnside group, free groups.

Introduction. Let F be a free group and V a characteristic subgroup of F. Then the natural homomorphism from F to F/V gives rise to a homomorphism

$$\chi: \operatorname{Aut}(F) \to \operatorname{Aut}(F/V)$$

from the automorphism group of F to the automorphism group of F/V.

By definition the free Burnside group B(X,n) of period n and basis X is the quotient group of the absolutely free group F = F(X) with basis X by characteristic subgroup F^n generated by elements of the form a^n for all $a \in F(X)$.

Theorem. Let $B(X,3) = F(X)/F(X)^3$ be a free Burnside group of period 3 with an arbitrary basis X of some rank. Then every automorphism of B(X,3) is induced by an automorphism of the absolutely free group F(X).

In the paper [1] we proved the theorem when X is finite. In the paper [2] Bryant and Macedonska proved that every automorphism of F/V is induced by an automorphism of F when F/V is nilpotent group of infinite rank. Bryant and Romankov proved even more general case in [3] when F/V is a free group of infinite rank in a subvariety of N_kA for some k. It is well known that a free Burnside group of period 3 is nilpotent, from which follows the truth of theorem when X is infinite.

In this paper we are going to give straight and short proof of the theorem when *X* is infinite using some results from the paper [2].

Bryant and Macedonska in [2] used so called *finitary lifting property*. Now we shall give the definition of the finitary lifting property. Let F be a free group of infinite rank and let $\{x_i : i \in I\}$ be a basis of F (for any relatively free group we use

_

^{*} E-mail: hayk.grigoryan27@gmail.com

the term "basis" as an alternative to "free generating set"). An automorphism ξ of F will be called *finitary*, if there is a finite subset Ω of I such that $\xi(x_i) = x_i$ for all $i \in I \setminus \Omega$.

Let \mathcal{B} be a variety of groups and write $V=\mathcal{B}(F)$. Suppose that Γ and Δ are subsets of I such that $\Gamma \cap \Delta$ is empty, Δ is finite, and $I \setminus (\Gamma \cup \Delta)$ is infinite. Let α be an automorphism of F/V such that $\alpha(x_iV) = x_iV$ for all $i \in \Gamma$. We say that the triple (Γ, Δ, α) can be lifted, if there exists a finitary automorphism ξ of F such that $\xi(x_i) = x_i$ for all $i \in \Gamma$ and $\xi(x_i)V = \alpha(x_iV)$ for all $i \in \Delta$. Such a finitary automorphism ξ is called a lifting of (Γ, Δ, α) . We say that \mathcal{B} has the finitary lifting property if, for every F of infinite rank every triple (Γ, Δ, α) can be lifted.

Proposition 1. [2]. Every nilpotent variety of groups has the finitary lifting property

Proposition 2. [2]. If \mathcal{B} is any variety of groups with the finitary lifting property and F is a free group of infinite rank, then every automorphism of $F/\mathcal{B}(F)$ is induced by an automorphism of F.

Below we will give a direct proof that variety of free Burnside groups of period 3 has the finitary lifting property.

Let us recall the definitions of some automorphisms, which we will use later in the paper.

Let R be a relatively free group with the basis $X = \{x_i \in I\}$. Any homomorphism from R into itself is completely determined by the images of the basis elements. For any $x_i \in X$ let ε_i be the automorphism mapping x_i to x_i^{-1} and leaving other elements of X unchanged. For any different $x_i, x_j \in X$, let λ_{ij} be the automorphism mapping x_i to $x_i x_j$ and leaving other elements of X unchanged. Automorphisms $\varepsilon_i, \lambda_{ij}$ are called Nielsen automorphisms. In 1924 Nielsen (see, for example, [4]) showed that the Nielsen automorphisms generate the full automorphism group $\operatorname{Aut}(F_n)$ of the finitely generated absolutely free group F_n .

Preliminary Lemmas. By B(3) we denote a free Burnside group of period 3 with an arbitrary basis X of some rank. We need some commutator identities (Ch. 10, [5])

$$[a,b]^{-1} = [b,a],$$
 (1)

$$[a,bc] = [a,c][a,b]^c.$$
 (2)

Also we need some commutator identities that holds in free Burnside groups of period 3 and any rank (Ch. 5.12, [6]). For any generator $x_i \in X$ and for any element $g_i \in B(3)$ we have the equations:

$$[x_i, x_i, x_p] \neq 1$$
 for different $i, j, p,$ (3)

$$[g_1, g_2, g_3] = [g_3, g_1, g_2] = [g_2, g_3, g_1],$$
 (4)

$$[g_1, g_2, g_3, g_4] = 1 (5)$$

.

Lemma 1. (Ch. 18, [5]). For any element $u \in B(3)$ and for any generator $x_i \in X$ one of the following equalities:

$$u = u_1, \tag{6}$$

$$u = u_1 x_i u_2, \tag{7}$$

$$u = u_1 x_i^{-1} u_2, (8)$$

$$u = u_1 x_i u_2 x_i^{-1} u_3 (9)$$

holds for some $u_1, u_2, u_3 \in Gp(X \setminus x_i)$.

Lemma 2. An element g of the group B(3) belongs to the commutator subgroup if and only if order of any generator in g by modulo 3 equals to 0.

Proof. The direct part of the claim is obvious. Let us show that if the order of any generator in g by modulo 3 equals to 0, then g belongs to the commutator subgroup. Let $g = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_k}^{\varepsilon_k}$, where $i_m \neq i_{m+1}$. Let's use induction with respect to the length of the word k. Not that if $g = x_{i_1}^{\varepsilon_1} U x_{i_1}^{\varepsilon_1} V$, then $g = x_{i_1}^{\varepsilon_1} U x_{i_1}^{-\varepsilon_1} U^{-1} U x_{i_1}^{\varepsilon_1+\varepsilon} V$. It is obvious that $x_{i_1}^{\varepsilon_1} U x_{i_1}^{-\varepsilon_1} U^{-1}$ belongs to the commutator subgroup. The element $U x_{i_1}^{\varepsilon_1+\varepsilon} V$ also belongs to the commutator subgroup, since it has the same generators' orders as g, but has a smaller length.

Lemma 3. For any automorphism $\alpha \in \operatorname{Aut}(B(3))$ the image of the generator x_i does not belong to the commutant of group B(3).

Proof. Assume the converse, then we shall prove that the element $g = \alpha([x_i, x_j, x_p])$ is trivial, which contradicts to the definition of automorphism. Let $\alpha(x_i) = [g_{i_1}, g_{i_2}]...[g_{i_{2k-1}}, g_{i_{2k}}]$. The proof is by induction on k. In the case of k = 1 we have

$$g = [[g_{i_1}, g_{i_2}], \alpha(x_i), \alpha(x_p)] = [g_{i_1}, g_{i_2}, \alpha(x_i), \alpha(x_p)] = 1.$$

Suppose that the statement holds for k-1 and show it holds for k. From the Eqs. (2), (4) we get

$$g = [[g_{i_1}, g_{i_2}]...[g_{i_{2k-1}}, g_{i_{2k}}], \alpha(x_j), \alpha(x_p)] = [\alpha(x_j), \alpha(x_p), [g_{i_1}, g_{i_2}]...[g_{i_{2k-1}}, g_{i_{2k}}]] =$$

$$= [\alpha(x_j), \alpha(x_p), ([g_{i_3}, g_{i_4}]...[g_{i_{2k-1}}, g_{i_{2k}}])] \cdot [\alpha(x_j), \alpha(x_p), [g_{i_1}, g_{i_2}]]^{([g_{i_3}, g_{i_4}]...[g_{i_{2k-1}}, g_{i_{2k}}])}$$

To prove g=1 let us show that both multipliers are trivial. From the Eq. (4) it follows that $[\alpha(x_j), \alpha(x_p), ([g_{i_3}, g_{i_4}]...[g_{i_{2k-1}}, g_{i_{2k}}])] = [([g_{i_3}, g_{i_4}]...[g_{i_{2k-1}}, g_{i_{2k}}]), \alpha(x_j), \alpha(x_p)]$ and by inductive hypothesis the first multiplier is trivial. Again using the Eq. (4) we get $[\alpha(x_j), \alpha(x_p), [g_{i_1}, g_{i_2}]] = [[g_{i_1}, g_{i_2}], \alpha(x_j), \alpha(x_p)]$ from which follows the triviality of the second multiplier.

The ore m. Variety of groups B(3) has the finitary lifting property.

Proof. Let (Δ, Γ, α) be an arbitrary triple, for which $\Gamma \cap \Delta$ is empty, Δ is finite and $I \setminus (\Gamma \cup \Delta)$ is infinite. Also $\alpha(x_i) = x_i$ for all $\iota \in \Gamma$ (x_i is the corresponding coset of the generator x_i , in this case, the coset $x_iB(3)$). Without loss of generality it can be assumed that $\Delta = \{x_1, \dots, x_k\}$. We say that the generator x_i is dominant in the element g, if the order of x_i in g by modulo 3 is not 0. For any automorphism $\alpha \in \operatorname{Aut}(B(3))$ and for any $\iota \in I$ there is a dominant in the image $\alpha(x_i)$.

Indeed, otherwise $\alpha(x_i)$ is in the commutant by Lemma 2, which is not possible by Lemma 3. Suppose $\{x_{j_1},\ldots,x_{j_p}\}$ is the set of dominant elements of $\alpha(x_1)$ and $x_{j_i} \in \Gamma$, then from the properties of Γ it follows that $\alpha(x_{j_i}) = x_{j_i}$ for $x_{j_i} \in \{x_{j_1},\ldots,x_{j_p}\}$. Let us examine the automorphism $\alpha\lambda_{1j_1}^{\epsilon_1}\ldots\lambda_{1j_p}^{\epsilon_p}$. With a proper selection of $\epsilon_1,\ldots\epsilon_p$ we can exclude dominant elements in $\alpha\lambda_{1j_1}^{\epsilon_1}\ldots\lambda_{1j_p}^{\epsilon_p}(x_1)$. Thus there is x_m in $\{x_{j_1},\ldots,x_{j_p}\}$ such that $x_m \notin \Gamma$. From Lemma 1 $\alpha(x_1) = u_1x_m^{\epsilon}v_1$, where $u_1,v_1 \in Gp(X\setminus x_m)$. Using Nielsen's automorphisms and automorphisms P_{ij} (P_{ij} is the automorphism which permutes generators x_i,x_j leaving other elements of X unchanged) we will construct automorphism ξ_1 for which $\xi_1(x_1) = u_1x_m^{\epsilon}v_1$. From the construction of the automorphism ξ_1 we see that $\xi_1(x_i) = x_i$ for $x_i \in \Gamma$ (since in the construction there were only used the automorphisms $\lambda_{mi},\epsilon_m,P_{1m}$). For automorphism ξ_1^{-1} holds $\xi_1^{-1}(u_1x_m^{\epsilon}v_1) = x_1$ identity. Let us examine the multiplication of automorphisms induced by the automorphism ξ_1^{-1} and α . For the image of the generator x_1 we have $\xi^{-1}\alpha(x_1) = x_1$. Let $\Gamma_1 = \Gamma \cup x_1$. Repeating the same argument for the generator x_2 and considering Γ_1 instead of Γ_1 using $\xi_1^{-1}\alpha$ instead of Γ_1 we will get an automorphism ξ_2 so that $\xi_2(x_2) = \xi_1^{-1}\alpha(x_2)$ and $\xi_2(x_i) = x_i$ for $x_i \in \Gamma_1$. Thus $\xi_2^{-1}\xi_1^{-1}\alpha(x_1) = x_1, \xi_2^{-1}\xi_1^{-1}\alpha(x_2) = x_2$. Continuing this process till x_k , we will get automorphisms ξ_1,ξ_2,\ldots,ξ_k , for which we have $\xi_k^{-1}\ldots\xi_1^{-1}\alpha(x_i) = x_i$ for $x_i \in \Delta$, thus $\xi_1\ldots\xi_k(x_i) = \alpha(x_i)$ for $x_i \in \Delta$. Since for any ξ_i we have $\xi_i(x_i) = x_i$ for $x_i \in \Gamma$, the same is true for $\xi_1\ldots\xi_k$.

Received 25.02.2019 Reviewed 17.03.2019 Accepted 02.04.2019

REFERENCES

- 1. **Atabekyan V.S., Aslanyan H.T., Grigoryan H.A., Grigoryan A.E.** Analogues of Nielsen's and Magnus's theorems for free Burnside groups of period 3. // Proceedings of the YSU. Physical and Mathematical Sciences, 2017, v. 51, No. 3, p. 217–223.
- 2. **Bryant R.M., Macedonska O.** Automorphisms of Relatively Free Nilpotent Groups of Infinite Rank. // Journal of Algebra, 1989, v. 121, No. 2, p. 388–398.
- 3. **Bryant R.M., Romankov V.A.** Automorphism Groups of Relatively Free Groups. // Math. Proc. of the Cambridge Philos. Soc., 1999, v. 127, p. 411–424.
- 4. Lyndon R., Schupp P. Combinatorial Theory of Groups. N.Y.: Springer-Verlag, 1977.
- 5. Hall M. The Theory of Groups. N.Y.: The Macmillan Company, 1959.
- Magnus W., Karrass A., Soliterr D. Combinatorial Theory of Groups. N.Y.: Dover Publications, 1976.