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The general formalism describing polyelectrolyte behavior in presence of
sequence disorder is presented. The Edwards and Poisson–Boltzmann equa-
tions are obtained. The possible effect of the boundary conditions is discussed.
Comparison between replica and constrained annealing approaches is made.
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Introduction. The structure and properties of macromolecules are governed
by interactions over different length scales including van der Waals and electro-
static, hydrogen bond forming, etc. In the present study we will focus mainly on the
biological polymers, which are heteropolymers comprised of monomers of different
types. At the same time, biological macromolecules are polyelectrolytes, i.e. contain
ionizable groups [1] able to disassociate in water, leaving charges on polymer chains
and releasing counter ions in solution.

Polyelectrolytes are ubiquitous in nature and exhibit rich phase behavior. Some
of them (e.g. proteins) are polyampholites and bear both cationic and anionic repeat
groups. The others (e.g. nucleic acids) are polyanions, carrying negative charges on
the nucleotides.

Polyelectrolytes have been extensively investigated both theoretically [2–15]
and experimentally [16]. Great progress was made in understanding their characteris-
tics in solutions at different concentrations ranging from dilute to dense.

The phase behavior of the polyelectrolytes substantially depends on the fact,
whether the heterogeneity is coupled with the short or long-ranged interactions. For
instance, a collapse transition for a neutral chain of a polyampholyte (heteropolymer
with long-range interactions) in three-dimensions has been reported in presence of
salt [17]. However, a modulated or frozen phase for the polyampholytes has not been
observed, even at very low temperatures. This is different from the well-known phase
behavior of the heteropolymers with short-range interactions [18], where freezing
transition is known to happen at temperatures low enough.
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Systems containing biological polyelectrolytes are often governed by both
long-range (electrostatic) and short-range interactions. In particular, when consider-
ing the problems of RNA folding, self-assembly of viruses etc. [19, 20] non-specific
electrostatic repulsion between chain segments of single-stranded RNA (ssRNA) or
single-straned DNA (ssDNA) competes with the sequence-specific Watson–Crick
base pair formation. Such an interplay needs to be properly accounted for and in
this paper we present an example of such consideration.

Polyelectrolytes with Short-Range Disorder. We consider a generic flexible
polyelectrolyte comprised of equally charged monomers with disorder, which is
conditioned by the short-range features only (e.g., ssRNA or ssDNA). The charge
per monomer is assumed to be equal to pe, where e is the electron charge and
0 < p < 1. The position of a monomer is considered in a continuous way as r(τ),
where τ ∈ [0,N] and N is the dimensionless length of the chain. The random
sequence of the chain assumes that the type of the τ-th monomer is described by
the variable ξτ . {ξ}s are considered to be independent random variables drawn with
the same probability law. Thus, the overall probability distribution of the sequence
{ξ} is

P{ξ}= ∏
τ

p(ξτ), (1)

where the sequence disorder is supposed to be Gaussian

p(ξτ) =
exp(− ξ 2

τ

2ξ 2 )√
2πξ 2

. (2)

The Hamiltonian of the system in this case reads

βH =
3

2`2

∫ N

0
dτ(∂τr(τ))2 +

β

2

∫ N

0
dτ

∫ N

0
dτ
′vττ ′(r(τ)− r(τ ′))+βV{r}, (3)

where ` is the length of the Kuhn segment, Vel{r} describes the interaction between
polyelectrolyte, counter-ions, viral capsid, etc., and

vττ ′(x) = v0ξτξτ ′δ (x) (4)

with the positive interaction constant v0 > 0. Thus, the different monomers will
attract, but the similar ones will repel.

The partition function of the polyelectrolyte for every fixed sequence {ξ}
writes

Z{ξ}=
∫

Dre−βH. (5)

In the limit of N → ∞, the free energy of a disordered system obeys the
principle of self-averaging [21]:

F =−kBT 〈lnZ{ξ}〉P, (6)

where 〈...〉P means averaging with the distribution function (1). Self-averaging
physically means that the distribution of the free energy has a vary narrow peak in the
vicinity of the point of maximum, corresponding to the mean value of free energy (6).
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Free Energy Calculation: Replica Trick and Constrained Annealing.
The quenched free energy (6) can be estimated using the replica trick [21]

−βF = lim
n→0

〈Z{ξ}n〉P−1
n

, (7)

where β = (kBT )−1. Now we need to calculate the n-replica partition function as

〈Z{ξ}n〉P =
∫

Dre−
3

2`2
∑

n
a=1

∫ N
0 dτ(∂τ ra(τ))2−β ∑

n
a=1 Vel{ra}×

×
∫

DξP{ξ}e−
βv0

2
∫ N

0 dτ
∫ N

0 dτ ′ξτ ξ
τ ′ ∑

n
a=1 δ (ra(τ)−ra(τ ′)). (8)

After some algebra the average over the distribution function (1) in the Eq. (8) is
transformed as

〈Z{ξ}n〉P ∝ e−
nV
2 ln(2πβv0)

∫
DΨDρ Dρ̂ DqDq̂eG(Ψ,ρ,ρ̂,q,q̂)+lnζ (ρ̂,q̂), (9)

where

G(Ψ,ρ, ρ̂,q, q̂,ϕ,c±) =− 1
2βv0

∑
a

∫
d3xΨa(x)2−β

n

∑
a=1

Wel(ρa,ϕa,c±a )−

−ξ 2

2 ∑
a

∫
d3xΨa(x)2

ρa(x)−ξ
2
∑
a<b

∫
d3x

∫
d3x′Ψa(x)Ψb(x′)qab(x,x′)+

+ı∑
a

∫
d3xρa(x)ρ̂a(x)ı ∑

a<b

∫
d3x

∫
d3x′qab(x,x′)q̂ab(x,x′), (10)

Wel(ρa,ϕa,c±a ) is the electrostatic contribution into the free energy [20]:

Wel(ρa,ϕa,c±a ) =
∫

d3x
{
− εε0

2
(∇ϕa(x))2

ϕa(x)
[

ec+a (x)− ec−a (x)−

−peρa(x)+ρsur f (x)
]
+ ∑

i=±

[
kBT (ci

a(x) lnci
a(x)− ci

a(x)− (ci
0 lnci

0− ci
0))−

−µ
i(ci

a(x)− ci
0)

]}
, (11)

where c± are the concentrations of ± monovalent salt ions with c±0 being their bulk
concentrations, and µ± their chemical potentials, ε is the permittivity of water and
ρsur f is the fixed charges distribution. Here

lnζ (ρ̂, q̂) =−N min
ψ

{∫
d3nxψ(x1, ...,xn)×

(
− `2

6 ∑
a

∇
2
a + ı∑

a
ρ̂a(xa)+

+ı ∑
a<b

q̂ab(xa,xb)

)
×ψ(x1, ...,xn)−E0

(∫
d3nxψ(x1, ...,xn)

2−1
)}

, (12)

where E0 is the ground state energy and ψ(x1, ...,xn) is the corresponding
eigenfunction of the “quantum-like” Hamiltonian

Ĥn =−
`2

6 ∑
a

∇
2
a + ı∑

a
ρ̂a(xa)+ ı ∑

a<b
q̂ab(xa,xb).
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In the ∼ O(ξ 4) approximation saddle-point approximation of the partition
function (9) gives the following system of the Edwards–Poisson–Boltzmann
equations for any integer n

`2

6
∇

2
ψ(x1, ...,xn) =

[
−β pe∑

a
ϕ(xa)− ε0−

−ξ
4(βv0)

2
(

∑
a

ρ(xa)+ ∑
a<b

qab(xa,xb)

)]
ψ(x1, ...,xn) (13)

and
εε0∇

2
r ϕ(r) = 2ec0 sinh(βeϕ(r))−ρsur f (r)+ peρ(r). (14)

We need to solve the system of Eqs. (13, 14) and to estimated the free energy (7).
Next step requires the introduction of assumptions about the particular form of charge
distribution ρsur f (r) to solve the system of Eqs. (13, 14), followed by taking the
limit of n→ 0 for the number of replicas. Solution is also strictly dependent on the
boundary conditions. The proposed approach allows to consider the effect of the
short-range disorder on the polyelectrolyte chain behavior in different geometries.

The alternative way to estimate the quenched free energy (6) is so called
constrained annealing approach. Following [22], the free energy of the polyelectro-
lyte with quenched random sequence {ξ} can be estimated on the basis of annealed
averages of the partition function with appropriate constraints using inequality

f ≥ g(T,µ)≥ fA, (15)

where f =
1
N
F and fA = −kBT

N
ln〈Z{ξ}〉P are the reduced quenched and annealed

free energy per monomer correspondingly, and

g(T,µ) =−kBT
N

ln〈Z{ξ}e−Nµα{ξ}〉P. (16)

Z{ξ} is the partition function of the polyelectrolyte with given sequence realization
{ξ}, and α{ξ} is the appropriate self-averaging quenched quantity. Thus, we can get
the best lower bound of the free energy (7) maximizing the Gibbs-like potential (16)

F ≈max
µ

g(T,µ). (17)

Let us choose α{ξ} as follows

α{ξ}= 1
N

∫ N

0
dτξτ . (18)

The average of the partition function (5) over the distribution function (1) with
constraint (18) after some algebra gives

−Ng(T,µ)
kBT

=
N
2
(µξ )2− βv0

2
(µξ

2)4
∫

d3x
ρ(x)

1+βv0ξ 2ρ(x)
−

−1
2

∫
d3x ln(1+βv0ξ

2
ρ(x))+ ı

∫
d3xρ(x) ˆρ(x)−βWel(ρ,ϕ,c±)−

N min
ψ

{∫
d3xψ(x)

(
− `2

6
∇

2 + ıρ̂(x)
)

ψ(x)−E0

(∫
d3xψ(x)2−1

)}
. (19)
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In the saddle point approximation the Gibbs-like potential (16) gives the following
system of the Edwards–Poisson–Boltzmann equations:

εε0∇
2
ϕ(x) = 2c0 sinh(βeϕ(x))−ρs(x)+qeNψ(x)2, (20)

E0ψ(x) =
[
− `2

6
∇

2−βqeϕ(x)+
(µξ )2

2

]
ψ(x).

Just like the case of replica approach we need to solve the system of Eqs. (20).
Solution is strictly dependent on the boundary conditions and charge distribution
ρsur f (r). Then, we need to put the obtained solution into the Gibbs-like potential
(19) and to maximize it over Lagrangian multiplier µ .

Each of the above mentioned methods has its own advantages. In both cases
we need to solve the system of Edwards and Poisson–Boltzmann equations. While
the replica approach requires to take the limit n→ 0 for the number of replicas, the
constrained annealing method needs to maximize the Gibbs-like potential (16). The
proposed approaches allow to consider the effect of the short-range disorder on the
polyelectrolyte chain behavior that is important for the interactions between DNA
(or RNA) and nanoparticles of the various origin.
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