A NECESSARY AND SUFFICIENT CONDITION FOR THE UNIQUENESS OF $\beta \delta$-NORMAL FORM OF TYPED λ-TERMS FOR THE CANONICAL NOTION OF δ-REDUCTION

L. E. BUDAGHYAN ${ }^{1}$, D. A. GRIGORYAN ${ }^{1 * *}$, L. H. TOROSYAN ${ }^{2 * * *}$
${ }^{1}$ Chair of Programming and Information Technologies YSU, Armenia
${ }^{2}$ HS International LLC, Armenia

In this paper the canonical notion of δ-reduction is considered. Typed λ-terms use variables of any order and constants of order ≤ 1, where the constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. The canonical notion of δ-reduction is the notion of δ-reduction that is used in the implementation of functional programming languages. It is shown that for canonical notion of δ-reduction SI-property is the necessary and sufficient condition for the uniqueness of $\beta \delta$-normal form of typed λ-terms.

MSC2010: 68N18.
Keywords: canonical notion of δ-reduction, $\beta \delta$-reduction, $\beta \delta$-normal form.
Typed λ-Terms, $\beta \delta$-Reduction. The definitions of this section can be found in [1-4]. Let M be a partially ordered set, which has a least element \perp, which corresponds to the indeterminate value, and each element of M is comparable only with \perp and itself. Let us define the set of types (denoted by Types): 1) $M \in$ Types, 2) If $\beta, \alpha_{1}, \ldots, \alpha_{k} \in$ Types $(k>0)$, then the set of all monotonic mappings from $\alpha_{1} \times \cdots \times \alpha_{k}$ into β (denoted by [$\alpha_{1} \times \cdots \times \alpha_{k} \rightarrow \beta$]) belongs to Types.

Let $\alpha \in$ Types and V_{α} be a countable set of variables of type α, then $V=\bigcup_{\alpha \in \text { Types }} V_{\alpha}$ is the set of all variables. The set of all terms, denoted by $\Lambda=\bigcup_{\alpha \in \text { Types }} \Lambda_{\alpha}$, where Λ_{α} is the set of terms of type α, is defined in the following way:

1. if $c \in \alpha, \alpha \in$ Types, then $c \in \Lambda_{\alpha}$;
2. if $x \in V_{\alpha}, \alpha \in$ Types, then $x \in \Lambda_{\alpha}$;
3. if $\tau \in \Lambda_{\left[\alpha_{1} \times \cdots \times \alpha_{k} \rightarrow \beta\right]}, t_{i} \in \Lambda_{\alpha_{i}}$, where $\beta, \alpha_{i} \in$ Types, $i=1, \ldots, k, k \geq 1$, then $\tau\left(t_{1}, \ldots, t_{k}\right) \in \Lambda_{\beta}$ (the operation of application);

[^0]4. if $\tau \in \Lambda_{\beta}, x_{i} \in V_{\alpha_{i}}$ where $\beta, \alpha_{i} \in$ Types, $i \neq j \Longrightarrow x_{i} \neq x_{j}, i, j=1, \ldots, k$, $k \geq 1$, then $\lambda x_{1} \ldots x_{k}[\tau] \in \Lambda_{\left[\alpha_{1} \times \cdots \times \alpha_{k} \rightarrow \beta\right]}$ (the operation of abstraction).

The notion of free and bound occurrences of variables as well as free and bound variable are introduced in the conventional way. The set of all free variables in the term t is denoted by $F V(t)$. Terms t_{1} and t_{2} are said to be congruent (which is denoted by $t_{1} \equiv t_{2}$), if one the term can be obtained from the other by renaming the bound variables. A term $t \in \Lambda_{\alpha}, \alpha \in$ Types, is called a constant term with value $a \in \alpha$ if $t \sim a$ (see [1,2]).

Further, we assume that M is a recursive set and considered terms use variables of any order and constants of order ≤ 1, where the constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. A function $f: M^{k} \rightarrow M, k \geq 1$, with indeterminate values of arguments, is said to be strongly computable, if there exists an algorithm, which stops with value $f\left(m_{1}, \ldots, m_{k}\right) \in M$ for all $m_{1}, \ldots, m_{k} \in M[1]$.

A set $\left\{t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right\}$ (shortly $\{\bar{t} / \bar{x}\}$, where $\bar{t}=<t_{1}, \ldots, t_{k}>, \bar{x}=<x_{1}, \ldots, x_{k}>$) is called substitution, where $t_{i} \in \Lambda_{\alpha_{i}}, x_{i} \in V_{\alpha_{i}}, \quad \alpha_{i} \in$ Types, $i \neq j \Rightarrow x_{i} \not \equiv x_{j}$, $i, j=1, \ldots, k, \quad k \geq 0$. The notation $t\left\{t_{1} / x_{1}, \ldots, t_{k} / x_{k}\right\}$ (shortly $t\{\bar{t} / \bar{x}\}$) is called an application of substitution $\{\bar{t} / \bar{x}\}$ to the term t and denotes the term obtained by the simultaneous substitution of the terms t_{1}, \ldots, t_{k} of all free occurrences of the variables x_{1}, \ldots, x_{k} into the term t. An application of substitution is said to be admissible, if all free variables of the term being substituted remain free after the application of substitution. We will consider only admissible applications of substitutions.

A term of the form $\lambda x_{1} \ldots x_{k}[\tau]\left(t_{1}, \ldots, t_{k}\right)$, where $x_{i} \in V_{\alpha_{i}}, i \neq j \Rightarrow x_{i} \not \equiv x_{j}$, $\tau \in \Lambda, t_{i} \in \Lambda_{\alpha_{i}}, \alpha_{i} \in$ Types, $i, j=1, \ldots, k, k \geq 1$, is called a β-redex, its convolution is the term $\tau\{\bar{t} / \bar{x}\}$. The set of all pairs $\left(\tau_{0}, \tau_{1}\right)$, where τ_{0} is a β-redex and τ_{1} is its convolution, is called a notion of β-reduction and is denoted by β. A one-step β-reduction $\left(\rightarrow_{\beta}\right)$ and β-reduction $\left(\rightarrow_{\beta}\right)$ are defined in the conventional way. A term containing no β-redexes is called a β-normal form. The set of all β-normal forms is denoted by $\beta-N F$.

The δ-redex has a form $f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}, i=1, \ldots, k$, $k \geq 1$, its convolution is either $m \in M$, in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim m$ or a subterm t_{i}, in this case $f\left(t_{1}, \ldots, t_{k}\right) \sim t_{i}, i=1, \ldots, k$. A fixed set of term pairs $\left(\tau_{0}, \tau_{1}\right)$, where τ_{0} is a δ-redex and τ_{1} is its convolution, is called a notion of δ-reduction and is denoted by δ. A one-step δ-reduction $\left(\rightarrow_{\delta}\right)$ and δ-reduction $\left(\rightarrow_{\delta}\right)$ are defined in the conventional way.

A one-step $\beta \delta$-reduction (\rightarrow) and $\beta \delta$-reduction $(\rightarrow \rightarrow)$ are defined in the conventional way. A term containing no $\beta \delta$-redexes is called normal form. The set of all normal forms is denoted by $N F$.

Definition 1. The term $t \in \Lambda$ is said to be strongly normalizable, if the length of each $\beta \delta$-reduction chain from the term t is finite.

Theorem 1. [3]. Every term is strongly normalizable.
Theorem 2. [3]. For every term $t \in \Lambda$, if $t \rightarrow_{\beta} t^{\prime}, t \rightarrow_{\beta} t^{\prime \prime}$ and $t^{\prime}, t^{\prime \prime} \in \beta-N F$, then $t^{\prime} \equiv \bar{t}^{\prime \prime}$.

Canonical Notion of δ-Reduction, Church-Rosser Property. A notion of δ-reduction is called a single-valued notion of δ-reduction, if δ is a single-valued relation, i.e. if $\left(\tau_{0}, \tau_{1}\right) \in \delta$ and $\left(\tau_{0}, \tau_{2}\right) \in \delta$, then $\tau_{1} \equiv \tau_{2}$, where $\tau_{0}, \tau_{1}, \tau_{2} \in \Lambda_{M}$. A notion of δ-reduction is called an effective notion of δ-reduction, if there exists an algorithm, which for any term $f\left(t_{1}, \ldots, t_{k}\right), f \in\left[M^{k} \rightarrow M\right], t_{i} \in \Lambda_{M}$, $i=1, \ldots, k, k \geq 1$, gives its convolution, if $f\left(t_{1}, \ldots, t_{k}\right)$ is a δ-redex and stops with a negative answer otherwise.

Definition 2. [2]. An effective, single-valued notion of δ-reduction is called a canonical notion of δ-reduction, if

1. $t \in \beta-N F, t \sim m, m \in M \backslash\{\perp\} \Rightarrow t \rightarrow \rightarrow_{\delta} m ;$
2. $t \in \beta-N F, F V(t)=\emptyset, t \sim \perp \Rightarrow t \rightarrow \rightarrow_{\delta} \perp$.

Theorem 3. [2]. Let δ be a canonical notion of δ-reduction, then:

1. $t \sim m, m \in M \backslash\{\perp\} \Rightarrow t \rightarrow \rightarrow m$;
2. $t \sim \perp, F V(t)=\emptyset \Rightarrow t \rightarrow \rightarrow \perp$.

Definition 3. The notion of δ-reduction has the substitution property (S-property), if from $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta$, where $t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, f \in\left[M^{k} \rightarrow M\right]$, $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k \geq 1$, and from the following properties

1. $f\left(t_{1}, \ldots, t_{k}\right)$ is not constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
2. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
3. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$,
it follows that for each admissible application of substitution $\left\{\tau_{1} / x_{1}, \ldots, \tau_{n} / x_{n}\right\}$ (shortly $\{\bar{\tau} / \bar{x}\}$), where $\tau_{i} \in \Lambda_{\alpha_{i}}, x_{i} \in V_{\alpha_{i}}, \alpha_{i} \in$ Types, $i \neq j \Rightarrow x_{i} \neq x_{j}, i, j=1, \ldots, n$, $n \geq 0$, there exist terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ such that $t_{1}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{1}^{\prime}, \ldots, t_{k}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{k}^{\prime}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \in \delta$ if $\tau \equiv t_{j}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \in \delta$ if $\tau \equiv \perp$.

Definition 4. The notion of δ-reduction has the inheritance property (I-property), if from $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta$, where $t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, f \in\left[M^{k} \rightarrow M\right]$, $F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \emptyset, k \geq 1$ and $t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex and from the following properties

1. $f\left(t_{1}, \ldots, t_{k}\right)$ is not constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
2. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
3. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$,
it follows that there exist terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime} \in \Lambda_{M}$ such that $t_{1} \rightarrow \rightarrow t_{1}^{\prime}, \ldots, \mu_{r^{\prime}} \rightarrow \rightarrow t_{i}^{\prime}, \ldots$, $t_{k} \rightarrow \rightarrow t_{k}^{\prime}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \in \delta$ if $\tau \equiv t_{j}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \in \delta$ if $\tau \equiv \perp$, where r^{\prime} is the convolution of the redex r.

Definition 5. The canonical notion of δ-reduction has substitution and inheritance property (SI-property), if it has S-property and I-property.

Definition 6. The notion of $\beta \delta$-reduction has the Church-Rosser property (CR-property), if for every term $t \in \Lambda_{\alpha}, \alpha \in$ Types, if $t \rightarrow \rightarrow t_{1}$ and $t \rightarrow \rightarrow t_{2}$, $t_{1}, t_{2} \in \Lambda_{\alpha}$, then there exists a term $t^{\prime} \in \Lambda_{\alpha}$ such that $t_{1} \rightarrow \rightarrow t^{\prime}$ and $t_{2} \rightarrow \rightarrow t^{\prime}$.

Theorem 4. For a canonical notion of δ-reduction that has SI property the notion of $\beta \delta$-reduction has the CR-property.

To prove the Theorem 4 first let us prove the Lemma 1.

Lemma 1. For every canonical notion of δ-reduction that has SI property and for every term $t \in \Lambda_{\alpha}, \alpha \in$ Types the following take place: if $t \rightarrow t_{1}, t \rightarrow t_{2}$, $t_{1}, t_{2} \in \Lambda_{\alpha}$, then there exists a term $t^{\prime} \in \Lambda_{\alpha}$ such that $t_{1} \rightarrow t^{\prime}$ and $t_{2} \rightarrow \rightarrow t^{\prime}$.

To prove Lemma 1 first let us prove the Propositions 1, 2, 3 .
Proposition 1. Let τ_{1}, τ_{2} be β-redexes and τ_{2} be a subterm of τ_{1}. Then there exists a term τ^{\prime} such that $\tau_{1}^{\prime} \rightarrow \rightarrow \tau^{\prime}$ and $\tau_{1 \tau_{2}^{\prime}} \rightarrow \rightarrow \tau^{\prime}$, where τ_{1}^{\prime} and τ_{2}^{\prime} are convolutions of the redexes τ_{1} and τ_{2}.

Proof. From Theorem 1 it follows that there exist terms $t_{1}^{\prime}, t_{2}^{\prime} \in \beta-N F$ such that $\tau_{1 \tau_{2}} \rightarrow_{\beta} \tau_{1}^{\prime} \rightarrow_{\beta} t_{1}^{\prime}$ and $\tau_{1 \tau_{2}} \rightarrow_{\beta} \tau_{1 \tau_{2}^{\prime}} \rightarrow_{\beta} t_{t_{2}^{\prime}}$. Then from Theorem 2 we get $t_{1}^{\prime} \equiv t_{2}^{\prime} \equiv \tau^{\prime}$. Therefore, $\tau_{1}^{\prime} \rightarrow \rightarrow \tau^{\prime}$ and $\tau_{1 \tau_{2}^{\prime}} \rightarrow \rightarrow \tau^{\prime}$.

Proposition 2. Let δ be a canonical notion of δ-reduction that has S-property. Let τ_{1} be a β-redex and τ_{2} be δ-redex, where τ_{2} is subterm of τ_{1}. Then there exists a term τ^{\prime} such that $\tau_{1}^{\prime} \rightarrow \rightarrow \tau^{\prime}$ and $\tau_{1 \tau_{2}^{\prime}} \rightarrow \rightarrow \tau^{\prime}$, where τ_{1}^{\prime} and τ_{2}^{\prime} are convolutions of the redexes τ_{1} and τ_{2} respectively.

Proof. Let $\tau_{1} \equiv \lambda x_{1} \ldots x_{n}[\mu]\left(\mu_{1}, \ldots, \mu_{n}\right)$, where $\mu \in \Lambda, \mu_{i} \in \Lambda_{\alpha_{i}}, x_{i} \in V_{\alpha_{i}}$, $\alpha_{i} \in$ Types, $i \neq j \Rightarrow x_{i} \not \equiv x_{j}, i, j=1, \ldots, n, n \geq 1$. The following cases are possible:
a) $\tau_{2} \sim m$, where $m \in M \backslash\{\perp\}$;
b) $\tau_{2} \sim \perp$ and $F V\left(\tau_{2}\right)=\varnothing$;
c) $\tau_{2} \sim \perp$ and $F V\left(\tau_{2}\right) \neq \emptyset$;
d) τ_{2} is not a constant term.

If $\tau_{2} \sim m$, where either $m \in M \backslash\{\perp\}$ or $m \equiv \perp$ and $F V\left(\tau_{2}\right)=\emptyset$, then $\tau_{2}\{\bar{\mu} / \bar{x}\} \sim m$ and from Theorem 3 we obtain $\tau_{2}\{\bar{\mu} / \bar{x}\} \rightarrow \rightarrow m$. Since $\tau_{2} \rightarrow_{\delta} \tau_{2}^{\prime}$, we have $\tau_{2} \sim \tau_{2}^{\prime} \sim m$, and from Theorem 3 we conclude $\tau_{2}^{\prime} \rightarrow \rightarrow m$. Therefore, if $\tau_{1} \equiv \lambda x_{1} \ldots x_{n}\left[\mu_{\tau_{2}}\right]\left(\mu_{1}, \ldots, \mu_{n}\right)$, we have from (1) it follows that $\tau^{\prime} \equiv \mu_{m}\{\bar{\mu} / \bar{x}\}$:

$$
\tau_{1}^{\prime} \equiv \mu_{\tau_{2}}\{\bar{\mu} / \bar{x}\} \equiv \mu\{\bar{\mu} / \bar{x}\}_{\tau_{2}\{\bar{\mu} / \bar{x}\}} \overbrace{\mu\{\bar{\mu} / \bar{x}\}_{m} \equiv \mu_{m}\{\bar{\mu} / \bar{x}\} \equiv \tau^{\prime}}^{\tau_{\tau_{2}} \equiv \lambda x_{1} \ldots x_{n}\left[\mu_{\tau_{2}}\right]\left(\mu_{1}, \ldots, \mu_{n}\right)} \lambda x_{1} \lambda x_{1} \ldots x_{n}\left[\mu_{\tau_{2}^{\prime}}\right]\left(\mu_{1}, \ldots, \mu_{n}\right) \equiv \tau_{1 \tau_{2}^{\prime}}\left[\mu_{m}\right]\left(\mu_{1}, \ldots, \mu_{n}\right) \text {, }
$$

If $\tau_{1} \equiv \lambda x_{1} \ldots x_{n}[\mu]\left(\mu_{1}, \ldots, \mu_{\tau_{2}}, \ldots, \mu_{n}\right), 1 \leq i \leq n$, then from (2) we have $\tau^{\prime} \equiv \mu\left\{\mu_{1} / x_{1}, \ldots, \mu_{i \tau_{2}^{\prime}} / x_{i}, \ldots, \mu_{n} / x_{n}\right\}:$

$$
\tau_{1 \tau_{2}} \equiv \lambda x_{1} \ldots x_{n}[\mu]\left(\mu_{1}, \ldots, \mu_{i_{2}}, \ldots, \mu_{n}\right)
$$

$\tau_{1}^{\prime} \equiv \mu\left\{\mu_{1} / x_{1}, \ldots, \mu_{i_{2}} / x_{i}, \ldots, \mu_{n} / x_{n}\right\} \underbrace{\beta}_{\delta} \lambda x_{1} \ldots x_{n}[\mu]\left(\mu_{1}, \ldots, \mu_{\tau_{2}^{\prime}}, \ldots, \mu_{n}\right) \equiv \tau_{1 \tau_{2}^{\prime}}$

$$
\begin{equation*}
\mu\left\{\mu_{1} / x_{1}, \ldots, \mu_{i \tau_{2}^{\prime}} / x_{i}, \ldots, \mu_{n} / x_{n}\right\} \equiv \tau^{\prime} \tag{2}
\end{equation*}
$$

If either $\tau_{2} \sim \perp$ and $F V\left(\tau_{2}\right) \neq \emptyset$ or τ_{2} is not a constant term, where $\tau_{2} \equiv f\left(t_{1}, \ldots, t_{k}\right), f \in \Lambda_{\left[M^{k} \rightarrow M\right]}, t_{i} \in \Lambda_{M}, i=1, \ldots, k, k \geq 1$, then from S-property follows that there exist terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$, such that $t_{1}\{\bar{\mu} / \bar{x}\} \rightarrow \rightarrow t_{1}^{\prime}, \ldots, t_{k}\{\bar{\mu} / \bar{x}\} \rightarrow \rightarrow t_{k}^{\prime}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), r\right) \in \delta$, where $r \equiv \perp$, if $\tau_{2}^{\prime} \equiv \perp$, and $r \equiv t_{j}^{\prime \prime}$, if $\tau_{2}^{\prime} \equiv t_{j}$ for some $j=1, \ldots, k$. Therefore, if $\tau_{1} \equiv \lambda x_{1} \ldots x_{n}\left[\mu_{\tau_{2}}\right]\left(\mu_{1}, \ldots, \mu_{n}\right)$, then from (3) it follows that $\tau^{\prime} \equiv \mu\{\bar{\mu} / \bar{x}\}_{r}:$

$$
\begin{aligned}
& \tau_{1 \tau_{2}} \equiv \lambda x_{1} \ldots x_{n}\left[\mu_{\tau_{2}}\right]\left(\mu_{1}, \ldots, \mu_{n}\right)
\end{aligned}
$$

If $\tau_{1} \equiv \lambda x_{1} \ldots x_{n}[\mu]\left(\mu_{1}, \ldots, \mu_{\tau_{2}}, \ldots, \mu_{n}\right), 1 \leq i \leq n$, then from (2) we get $\tau^{\prime} \equiv \mu\left\{\mu_{1} / x_{1}, \ldots, \mu_{i \tau_{2}^{\prime}} / x_{i}, \ldots, \mu_{n} / x_{n}\right\}$.

Proposition 3. Let δ be a canonical notion of δ-reduction that has I-property. Let τ_{1} be a δ-redex and τ_{2} be a redex, where τ_{2} is subterm of τ_{1}. Then there exists a term τ^{\prime} such that $\tau_{1}^{\prime} \rightarrow \rightarrow \tau^{\prime}$ and $\tau_{1 \tau_{2}^{\prime}} \rightarrow \rightarrow \tau^{\prime}$, where τ_{1}^{\prime} and τ_{2}^{\prime} are convolutions of the redexes τ_{1} and τ_{2}.

Proof. Let $\tau_{1} \equiv f\left(t_{1}, \ldots, t_{k}\right)$, where $f \in\left[M^{k} \rightarrow M\right], t_{1}, \ldots, t_{k} \in \Lambda_{M}$. The following cases are possible:
a) $\tau_{1} \sim m$, where $m \in M \backslash\{\perp\}$;
b) $\tau_{1} \sim \perp$ and $F V\left(\tau_{1}\right)=\varnothing$;
c) $\tau_{1} \sim \perp$ and $F V\left(\tau_{1}\right) \neq \emptyset$;
d) τ_{1} is not a constant term.

If $\tau_{1} \sim m$, where either $m \in M \backslash\{\perp\}$, or $m \equiv \perp$ and $F V\left(\tau_{1}\right)=\emptyset$, then from $\tau_{1} \rightarrow_{\delta} \tau_{1}^{\prime}$ it follows that $\tau_{1} \sim \tau_{1}^{\prime} \sim m$, and from Theorem 3 we get $\tau_{1}^{\prime} \rightarrow \rightarrow m$. Since $\tau_{1} \rightarrow \tau_{1 \tau_{2}^{\prime}}$, we have $\tau_{1} \sim \tau_{1 \tau_{2}^{\prime}} \sim m$. Therefore, from Theorem 3 it follows that $\tau_{1 \tau_{2}^{\prime}} \rightarrow \rightarrow$. Therefore, $\tau^{\prime} \equiv m$.

If either $\tau_{1} \sim \perp$ and $F V\left(\tau_{1}\right) \neq \varnothing$ or τ_{1} is not a constant term, where $\tau_{1} \equiv f\left(t_{1}, \ldots, t_{\tau_{\tau}}, \ldots, t_{k}\right), 1 \leq j \leq k$, then from I-property it follows that there exist terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime} \in \Lambda_{M}$ such that $t_{1} \rightarrow t_{1}^{\prime}, \ldots, t_{\tau_{2}^{\prime}} \rightarrow \rightarrow t_{j}^{\prime}, \ldots, t_{k} \rightarrow \rightarrow t_{k}^{\prime}$ and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \tau\right) \in \delta$, where $\tau \equiv \perp$, if $\tau_{1}^{\prime} \equiv \perp$, and $\tau \equiv t_{i}^{\prime}$, if $\tau_{1}^{\prime} \equiv t_{i}, 1 \leq i \leq k$. It is easy to see that $\tau_{1}^{\prime} \rightarrow \rightarrow \tau$, since if $\tau_{1}^{\prime} \equiv \perp$, we have $\tau \equiv \perp$ and $\tau_{1}^{\prime} \rightarrow \rightarrow \tau$. If $\tau_{1}^{\prime} \equiv t_{i}$, then $\tau \equiv t_{i}^{\prime}$ and $\tau_{1}^{\prime} \equiv t_{i} \rightarrow \rightarrow t_{i}^{\prime} \equiv \tau$. Therefore from (4) it follows that $\tau^{\prime} \equiv \tau$:

$$
\begin{equation*}
\tau_{1_{\tau_{2}}} \equiv f\left(t_{1}, \ldots, t_{\tau_{\tau_{2}}}, \ldots, t_{k}\right) \tag{4}
\end{equation*}
$$

A term t with different fixed occurrences of subterms τ_{1}, τ_{2}, where τ_{1} is not a subterm of τ_{2} and τ_{2} is not a subterm of τ_{1} and $\tau_{i} \in \Lambda_{\alpha_{i}}, \alpha_{i} \in$ Types, $i=1,2$, is denoted by $t_{\tau_{1}, \tau_{2}}$. A term with the fixed occurrences of the terms τ_{1}, τ_{2} replaced by the terms $\tau_{1}^{\prime}, \tau_{2}^{\prime}$ respectively is denoted by $\tau_{\tau_{1}^{\prime}, \tau_{2}^{\prime}}$, where $\tau_{i}^{\prime} \in \Lambda_{\alpha_{i}}, i=1,2$.

ProofofLemma1. If $t_{1} \equiv t_{2}$, then $t^{\prime} \equiv t_{1} \equiv t_{2}$. If $t_{1} \not \equiv t_{2}$, then there exist $\tau_{1}, \tau_{2} \in \Lambda$ redexes of t such that $t_{1} \equiv t_{\tau_{1}^{\prime}}$ and $t_{2} \equiv t_{\tau_{2}^{\prime}}$, where $\tau_{1}^{\prime}, \tau_{2}^{\prime}$ are the convolutions of τ_{1} and τ_{2} respectively. If τ_{1} is not a subterm of τ_{2} and τ_{2} is not a subterm of τ_{1}, then (5) implies $t^{\prime} \equiv t_{\tau_{1}^{\prime}, \tau_{2}^{\prime}}$:

Without lose of generality let us suppose that the redex τ_{2} is a subterm of the redex τ_{1}. By Propositions $1,2,3$ there exists a term τ^{\prime} such that $\tau_{1}^{\prime} \rightarrow \rightarrow \tau^{\prime}$ and $\tau_{1} \tau_{2}^{\prime} \rightarrow \rightarrow \tau^{\prime}$. Therefore, $t_{1} \equiv t_{\tau_{1}^{\prime}} \rightarrow \rightarrow t_{\tau^{\prime}}, t_{2} \equiv t_{\tau_{1} \tau_{2}^{\prime}} \rightarrow \rightarrow t_{\tau^{\prime}}$ and $t^{\prime} \equiv t_{\tau^{\prime}}$.

Let $t \in \Lambda_{\alpha}, \alpha \in$ Types, and $t \equiv t_{1} \rightarrow \ldots \rightarrow t_{n}, n \geq 1$, where $t_{i} \in \Lambda_{\alpha}, i=1, \ldots, n$, then the sequence t_{1}, \ldots, t_{n} is called the inference of the term t_{n} from the term t and n is called the length of that inference. The inference tree of the term t is an oriented tree with the root t, and if a term τ is some node of the tree and $\tau_{1}, \ldots, \tau_{k}, k \geq 0$, is all occurrences of $\beta \delta$-redexes in the term τ, then $\tau_{\tau_{1}^{\prime}}, \ldots, \tau_{\tau_{k}^{\prime}}$ are all descendants of the node τ, where τ_{i}^{\prime} is the convolution of $\tau_{i}, i=1, \ldots, k$.

The inference tree of every term t is a finite tree (that follows from König's lemma). The height of an inference tree of the term t is the length of the longest path from the root t to a leaf. The set of all terms, whose height of the inference tree are equal to $n-1$, is denoted by $\Lambda^{(n)}, n \geq 1$.

Proofof Theorem 4. Let $t \in \Lambda^{(n)}, n \geq 1$, and $t \rightarrow \rightarrow t_{1}, t \rightarrow \rightarrow t_{2}$, where $t_{1}, t_{2} \in \Lambda$. Let us show that there exists a term t^{\prime} such that $t_{1} \rightarrow \rightarrow t^{\prime}$ and $t_{2} \rightarrow \rightarrow t^{\prime}$. If $n=1$, then $t \in N F$ and $t \equiv t_{1} \equiv t_{2} \equiv t^{\prime}$. Let $n>1$ and we suppose that CR-property holds for every term $\tau \in \Lambda^{(k)}, 1 \leq k<n$, and show that it holds for the term t. If $t \equiv t_{1}$, then $t_{1} \rightarrow \rightarrow t_{2}$ and $t^{\prime} \equiv t_{2}$. If $t \equiv t_{2}$, then $t_{2} \rightarrow \rightarrow t_{1}$ and $t^{\prime} \equiv t_{1}$. If $t_{1} \not \equiv t$ and $t_{2} \not \equiv t$, then there exist terms $t_{1}^{\prime}, t_{2}^{\prime} \in \Lambda$ such that $t \rightarrow t_{1}^{\prime} \rightarrow \rightarrow t_{1}$ and $t \rightarrow t_{2}^{\prime} \rightarrow \rightarrow t_{2}$.

Therefore from Lemma 1 it follows that there exists a term t^{\prime} such that $t_{1}^{\prime} \rightarrow \rightarrow t^{\prime}$ and $t_{2}^{\prime} \rightarrow \rightarrow t^{\prime}$. Since $t_{1}^{\prime} \rightarrow \rightarrow t_{1}, t_{1}^{\prime} \rightarrow \rightarrow t^{\prime}$ and $t_{1}^{\prime} \in \Lambda^{\left(k_{1}\right)}, 1 \leq k_{1} \leq n-1$, from the induction hypothesis it follows that there exists a term $t_{1}^{\prime \prime}$ such that $t_{1} \rightarrow \rightarrow t_{1}^{\prime \prime}$ and $t^{\prime} \rightarrow \rightarrow t_{1}^{\prime \prime}$. Since $t_{2}^{\prime} \rightarrow \rightarrow t_{2}, t_{2}^{\prime} \rightarrow \rightarrow t^{\prime}$ and $t_{2}^{\prime} \in \Lambda^{\left(k_{2}\right)}, 1 \leq k_{2} \leq n-1$, from the induction hypothesis it follows that there exists a term $t_{2}^{\prime \prime}$ such that $t_{2} \rightarrow \rightarrow t_{2}^{\prime \prime}$ and $t^{\prime} \rightarrow \rightarrow t_{2}^{\prime \prime}$. Since $t^{\prime} \rightarrow \rightarrow t_{1}^{\prime \prime}$, $t^{\prime} \rightarrow \rightarrow t_{2}^{\prime \prime}$ and $t^{\prime} \in \Lambda^{\left(k_{3}\right)}, 1 \leq k_{3} \leq n-1$, from the induction hypothesis it follows that there exists a term $t^{\prime \prime}$ such that $t_{1}^{\prime \prime} \rightarrow \rightarrow t^{\prime \prime}$ and $t_{2}^{\prime \prime} \rightarrow \rightarrow t^{\prime \prime}$. Therefore, $t_{1} \rightarrow \rightarrow t^{\prime \prime}$ and $t_{2} \rightarrow \rightarrow t^{\prime \prime}$.

The Uniqueness of the $\beta \delta$-Normal Form.

Theorem 5. For every canonical notion of δ-reduction the following holds: $\forall t \in \Lambda, \forall t^{\prime}, t^{\prime \prime} \in N F\left(t \rightarrow \rightarrow t^{\prime}, t \rightarrow \rightarrow t^{\prime \prime} \Rightarrow t^{\prime} \equiv t^{\prime \prime}\right) \Leftrightarrow$ canonical notion of δ-reduction has SI-property.

Proof.

Sufficiency. Let δ be a canonical notion of δ-reduction that has SI-property. Therefore from Theorem 4 it follows that the notion of $\beta \delta$-reduction has CR-property. Let $t \in \Lambda, t^{\prime}, t^{\prime \prime} \in N F$ and $t \rightarrow \rightarrow t^{\prime}, t \rightarrow \rightarrow t^{\prime \prime}$. Therefore, there exists a term $t^{\prime \prime \prime}$ such that $t^{\prime} \rightarrow \rightarrow t^{\prime \prime \prime}$ and $t^{\prime \prime} \rightarrow \rightarrow t^{\prime \prime \prime}$. Since $t^{\prime}, t^{\prime \prime} \in N F$, we have $t^{\prime} \equiv t^{\prime \prime \prime}$ and $t^{\prime \prime} \equiv t^{\prime \prime \prime}$. Therefore, $t^{\prime} \equiv t^{\prime \prime}$.

Necessity. Let δ be a canonical notion of δ-reduction. Suppose that for every term t the following takes place: if $t \rightarrow \rightarrow t^{\prime}$ and $t \rightarrow \rightarrow t^{\prime \prime}$, where $t^{\prime}, t^{\prime \prime} \in N F$, then $t^{\prime} \equiv$ $t^{\prime \prime}$. Suppose to the contrary that S-property does not hold for δ. Therefore, there exists $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta$, where $t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, f \in\left[M^{k} \rightarrow M\right], F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq \varnothing$, $k \geq 1$, and

1. $f\left(t_{1}, \ldots, t_{k}\right)$ is a non constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
2. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
3. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$,
and there exists a substitution $\left\{\tau_{1} / x_{1}, \ldots, \tau_{n} / x_{n}\right\}$, where $\tau_{i} \in \Lambda_{\alpha_{i}}, x_{i} \in V_{\alpha_{i}}, \alpha_{i} \in$ Types, $i \neq j \Rightarrow x_{i} \neq x_{j}, i, j=1, \ldots, n, n \geq 1$, such that for every terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ such that $t_{1}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{1}^{\prime}, \ldots, t_{k}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{k}^{\prime}$ it follows that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$ if $\tau \equiv t_{j}$, and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \notin \delta$ if $\tau \equiv \perp$.

Let us show that, if $t_{1}^{\prime}, \ldots, t_{k}^{\prime} \in N F$, then we get a contradiction for the term $\lambda x_{1} \ldots x_{n}\left[f\left(t_{1}, \ldots, t_{k}\right)\right]\left(\tau_{1}, \ldots, \tau_{n}\right)$.

1) If $f\left(t_{1}, \ldots, t_{k}\right)$ is a non constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, then we have: $\lambda x_{1} \ldots x_{n}\left[f\left(t_{1}, \ldots, t_{k}\right)\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\delta} \lambda x_{1} \ldots x_{n}\left[t_{j}\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\beta} t_{j}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{j}^{\prime} ;$ $\lambda x_{1} \ldots x_{n}\left[f\left(t_{1}, \ldots, t_{k}\right)\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\beta} f\left(t_{1}\{\bar{\tau} / \bar{x}\}, \ldots, t_{k}\{\bar{\tau} / \bar{x}\}\right) \rightarrow \rightarrow f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.

If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is not a δ-redex, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \in N F$. Since t_{j}^{\prime} is subterm of $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$, then $t_{j}^{\prime} \not \equiv f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$, which is a contradiction. If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is a δ-redex, then the following 2 cases are possible:
a) there exists $i \neq j(1 \leq i \leq k)$ such that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{i}^{\prime}\right) \in \delta$. Therefore $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} t_{i}^{\prime}$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$, then $t_{i}^{\prime} \not \equiv t_{j}^{\prime}$, which is a contradiction.
b) $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), m\right) \in \delta$, where $m \in M$. Therefore $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} m$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$, then $t_{j}^{\prime} \not \equiv m$, which is a contradiction.
2) If $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, then we have:
$\lambda x_{1} \ldots x_{n}\left[f\left(t_{1}, \ldots, t_{k}\right)\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\delta} \lambda x_{1} \ldots x_{n}\left[t_{j}\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\beta} t_{j}\{\bar{\tau} / \bar{x}\} \rightarrow \rightarrow t_{j}^{\prime} ;$
$\lambda x_{1} \ldots x_{n}\left[f\left(t_{1}, \ldots, t_{k}\right)\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\beta} f\left(t_{1}\{\bar{\tau} / \bar{x}\}, \ldots, t_{k}\{\bar{\tau} / \bar{x}\}\right) \rightarrow \rightarrow f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.
If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is not a δ-redex, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \in N F$. Since t_{j}^{\prime} is subterm of the term $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \not \equiv t_{j}^{\prime}$, which is a contradiction. If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is a δ-redex, then the following 2 cases are possible:
a) there exists $i \neq j(1 \leq i \leq k)$ such that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{i}^{\prime}\right) \in \delta$. Therefore $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} t_{i}^{\prime}$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$, then $t_{j}^{\prime} \not \equiv t_{j}^{\prime}$, which is a contradiction.
b) $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \in \delta$, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} \perp$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$, then $t_{i}^{\prime} \not \equiv \perp$, which is a contradiction.
3) If $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$, then we have:
$\lambda x_{1} \ldots x_{n}\left[f\left(t_{1}, \ldots, t_{k}\right)\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\delta} \lambda x_{1} \ldots x_{n}[\perp]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\beta} \perp$;
$\lambda x_{1} \ldots x_{n}\left[f\left(t_{1}, \ldots, t_{k}\right)\right]\left(\tau_{1}, \ldots, \tau_{n}\right) \rightarrow_{\beta} f\left(t_{1}\{\bar{\tau} / \bar{x}\}, \ldots, t_{k}\{\bar{\tau} / \bar{x}\}\right) \rightarrow \rightarrow f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.
If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is not a δ-redex, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \in N F$. Since $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \not \equiv \perp$, then we have a contradiction. If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is a δ-redex, then there exists $i(1 \leq i \leq k)$ such that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{i}^{\prime}\right) \in \delta$. Therefore $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} t_{i}^{\prime}$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{j}^{\prime}\right), \perp\right) \notin \delta$, then $t_{i}^{\prime} \not \equiv \perp$, which is a contradiction.

Now we suppose that I-property does not hold for δ, which means that there exists $\left(f\left(t_{1}, \ldots, t_{k}\right), \tau\right) \in \delta$, where $f \in\left[M^{k} \rightarrow M\right], t_{1}, \ldots, t_{k}, \tau \in \Lambda_{M}, F V\left(f\left(t_{1}, \ldots, t_{k}\right)\right) \neq$ \varnothing and $t_{i} \equiv \mu_{r}$ for some $i(1 \leq i \leq k)$, where r is a redex and

1. $f\left(t_{1}, \ldots, t_{k}\right)$ is a non constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
2. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, or
3. $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$,
and for every terms $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ such that $t_{1} \rightarrow \rightarrow t_{1}^{\prime}, \ldots, \mu_{r^{\prime}} \rightarrow \rightarrow t_{i}^{\prime}, \ldots, t_{k} \rightarrow \rightarrow t_{k}^{\prime}$ it follows that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$ if $\tau \equiv t_{j}$, and $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \notin \delta$ if $\tau \equiv \perp$.

Let us show that, if $t_{1}^{\prime}, \ldots, t_{k}^{\prime} \in N F$, then we get a contradiction for the term $f\left(t_{1}, \ldots, \mu_{r}, \ldots, t_{k}\right)$.

1) If $f\left(t_{1}, \ldots, t_{k}\right)$ is a non constant term and $\tau \equiv t_{j}, 1 \leq j \leq k$, then we have:
$f\left(t_{1}, \ldots, \mu_{r}, \ldots, t_{k}\right) \rightarrow_{\delta} t_{j} \rightarrow \rightarrow t_{j}^{\prime} ;$
$f\left(t_{1}, \ldots, \mu_{r}, \ldots, t_{k}\right) \rightarrow f\left(t_{1}, \ldots, \mu_{r^{\prime}}, \ldots, t_{k}\right) \rightarrow \rightarrow f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.
If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is not δ-redex, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \in N F$. Since t_{j}^{\prime} is the subterm of the term $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \not \equiv t_{j}^{\prime}$, which is a contradiction. If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is δ-redex, then there exists $i \neq j(1 \leq i \leq k)$ such that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{i}^{\prime}\right) \in \delta$. Therefore $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} t_{i}^{\prime}$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$, then $t_{i}^{\prime} \not \equiv t_{j}^{\prime}$, which is a contradiction.
2) If $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv t_{j}, 1 \leq j \leq k$, then we have:
$f\left(t_{1}, \ldots, \mu_{r}, \ldots, t_{k}\right) \rightarrow_{\delta} t_{j} \rightarrow \rightarrow t_{j}^{\prime} ;$
$f\left(t_{1}, \ldots, \mu_{r}, \ldots, t_{k}\right) \rightarrow f\left(t_{1}, \ldots, \mu_{r^{\prime}}, \ldots, t_{k}\right) \rightarrow \rightarrow f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.
If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is not δ-redex, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \in N F$. Since t_{j}^{\prime} is subterm of the term $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \not \equiv t_{j}^{\prime}$, which is a contradiction. If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is δ-redex, then the following 2 cases are possible:
a) $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \in \boldsymbol{\delta}$, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} \perp$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \boldsymbol{\delta}$, then $t_{j}^{\prime} \not \equiv \perp$, which is a contradiction.
b) there exists $i \neq j(1 \leq i \leq k)$ such that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{i}^{\prime}\right) \in \delta$. Therefore $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} t_{i}^{\prime}$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{j}^{\prime}\right) \notin \delta$, then $t_{i}^{\prime} \not \equiv t_{j}^{\prime}$, which is a contradiction.
3) If $f\left(t_{1}, \ldots, t_{k}\right) \sim \perp$ and $\tau \equiv \perp$, then we have:
$f\left(t_{1}, \ldots, \mu_{r}, \ldots, t_{k}\right) \rightarrow_{\delta} \perp ;$
$f\left(t_{1}, \ldots, \mu_{r}, \ldots, t_{k}\right) \rightarrow f\left(t_{1}, \ldots, \mu_{r^{\prime}}, \ldots, t_{k}\right) \rightarrow \rightarrow f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$.
If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is not δ-redex, then $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \in N F$. Since $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \not \equiv \perp$, we have a contradiction. If $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ is δ-redex, then there exists $i(1 \leq i \leq k)$ such that $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), t_{i}^{\prime}\right) \in \delta$. Therefore $f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \rightarrow_{\delta} t_{i}^{\prime}$. Since $\left(f\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right), \perp\right) \notin \delta$, we get $t_{i}^{\prime} \not \equiv \perp$, which is a contradiction.

Received 07.11.2018
Reviewed 29.01.2019
Accepted 02.04.2019

REFERENCES

1. Nigiyan S.A. On Non-classical Theory of Computability. // Proceedings of the YSU. Physical and Mathematical Sciences, 2015, No. 1, p. 52-60.
2. Nigiyan S.A., Khondkaryan T.V. On Canonical Notion of δ-Reduction and on Translation of Typed λ-Terms into Untyped λ-Terms. // Proceedings of the YSU. Physical and Mathematical Sciences, 2017, v. 51, No. 1, p. 46-52.
3. Budaghyan L.E. Formalizing the Notion of δ-Reduction in Monotonic Models of Typed λ-Calculus. // Algebra, Geometry and Their Applications, 2002, v. 1, p. 48-57.
4. Barendregt H. The Lambda Calculus. Its Syntax and Semantics. North-Holland Publishing Company, 1981.

[^0]: * E-mail: budaghyan.le@gmail.com
 ** E-mail: david.grigoryan.a@gmail.com
 *** E-mail: lusin.torosyan95@gmail.com

