Informatics

ON A LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. UPPER BOUNDS

V. P. GABRIELYAN *

Chair of Discrete Mathematics and Theoretical Informatics YSU, Armenia

We obtain upper bounds of the complexity of linearized coverings for some special solutions of the equation
$x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots+x_{3 n} x_{1} x_{2}+x_{1} x_{3} x_{5}+x_{4} x_{6} x_{8}+\cdots+x_{3 n-2} x_{3 n} x_{2}=b$ over an arbitrary finite field.

MSC2010: Primary 97H60; Secondary 14N20, 51E21.
Keywords: linear algebra, finite field, coset of linear subspace, linearized covering.

Introduction. Throughout this paper F_{q} stands for a finite field with q elements [1] (q-power of a prime number), and F_{q}^{n} stands for an n-dimensional linear space over $F_{q}: F_{q}^{n} \equiv\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in F_{q}, i=1,2, \ldots, n\right\}$. If L is a linear subspace in F_{q}^{n} and $\alpha \in F_{q}^{n}$, then the set $\alpha+L=\{\alpha+x \mid x \in L\}$ is a coset (or translate) of the subspace L and $\operatorname{dim}(\alpha+L)$ coincides with $\operatorname{dim} L$. An equivalent definition: a subset $H \subseteq F_{q}^{n}$ is a coset, if whenever $h_{1}, h_{2}, \ldots, h_{m}$ are in H, so is any affine combination of them, i.e. $\sum_{i=1}^{m} \lambda_{i} h_{i} \in H$ for any $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ in F_{q} such that $\sum_{i=1}^{m} \lambda_{i}=1$. It can be readily verified that any m-dimensional coset in F_{q}^{n} can be represented as a set of solutions of a certain system of linear equations over F_{q} of rank $n-m$ and vice versa.

Definition. Let M be a subset in F_{q}^{n} and $H_{1}, H_{2}, \ldots, H_{m} \subseteq M$ be cosets of linear subspaces in F_{q}^{n}. If $M=\bigcup_{i=1}^{m} H_{i}$, then we say that $\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ is a linearized covering of M of complexity (or length) m. The linearized covering of M with minimal length is the shortest linearized covering of M.

The problem of the shortest (minimal) linearized covering of the set of solutions of a polynomial equation over a finite field was first investigated in [2, 3] for a simple field F_{2}, and the theory of linearized disjunctive normal forms was introduced. Some metric characteristics of the linearized coverings of subsets of a finite

[^0]field were investigated in [4, 5]. The problem of a linearized covering of symmetric subsets of a finite field was solved in [6], and for the sets of solutions of quadratic and some higher-degree equations over a finite field was solved in [7--15].

Main Theorem. For given $b \in F_{q}$ and $n \geqslant 1$ consider an equation

$$
\begin{equation*}
x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots+x_{3 n} x_{1} x_{2}+x_{1} x_{3} x_{5}+x_{4} x_{6} x_{8}+\cdots+x_{3 n-2} x_{3 n} x_{2}=b \tag{1}
\end{equation*}
$$

over F_{q}. We denote by M the set of solutions of (1). It is clear that $M \subseteq F_{q}^{3 n}$. We rewrite Eq. (1) in the following form:

$$
\begin{equation*}
\left(x_{1}+x_{4}\right)\left(x_{2}+x_{5}\right) x_{3}+\left(x_{4}+x_{7}\right)\left(x_{5}+x_{8}\right) x_{6}+\cdots+\left(x_{3 n-2}+x_{1}\right)\left(x_{3 n-1}+x_{2}\right) x_{3 n}=b . \tag{2}
\end{equation*}
$$

If $n \equiv 0(\bmod 2)$ or $q \equiv 0(\bmod 2)$, then
$x_{3 n-2}+x_{1}=\sum_{i=1}^{n-1}(-1)^{i-1}\left(x_{3 i-2}+x_{3 i+1}\right) \quad$ and $\quad x_{3 n-1}+x_{2}=\sum_{i=1}^{n-1}(-1)^{i-1}\left(x_{3 i-1}+x_{3 i+2}\right)$, and Eq. (2) can be rewritten in the form

$$
\begin{gather*}
\left(x_{1}+x_{4}\right)\left(x_{2}+x_{5}\right) x_{3}+\left(x_{4}+x_{7}\right)\left(x_{5}+x_{8}\right) x_{6}+\cdots \\
\cdots+\left(x_{3 n-5}+x_{3 n-2}\right)\left(x_{3 n-4}+x_{3 n-1}\right) x_{3(n-1)}+ \tag{3}\\
+\left[\sum_{i=1}^{n-1}(-1)^{i-1}\left(x_{3 i-2}+x_{3 i+1}\right)\right]\left[\sum_{i=1}^{n-1}(-1)^{i-1}\left(x_{3 i-1}+x_{3 i+2}\right)\right] x_{3 n}=b .
\end{gather*}
$$

For any vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 n}\right) \in F_{q^{3 n}}$ when $n \equiv 1(\bmod 2)$ and $q \equiv 1(\bmod 2)$, we construct a new vector
$\tilde{\boldsymbol{\alpha}}=\left(\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{5}\right),\left(\alpha_{4}+\alpha_{7}\right)\left(\alpha_{5}+\alpha_{8}\right), \ldots,\left(\alpha_{3 n-2}+\alpha_{1}\right)\left(\alpha_{3 n-1}+\alpha_{2}\right)\right) \in F_{q}^{n}$, and when $n \equiv 0(\bmod 2)$ or $q \equiv 0(\bmod 2)$, we construct a vector $\tilde{\boldsymbol{\alpha}}=\left(\left(\alpha_{1}+\right.\right.$ $\left.\left.+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{5}\right),\left(\alpha_{4}+\alpha_{7}\right)\left(\alpha_{5}+\alpha_{8}\right), \ldots,\left(\alpha_{3 n-5}+\alpha_{3 n-2}\right)\left(\alpha_{3 n-4}+\alpha_{3 n-1}\right)\right) \in F_{q}^{n-1}$. Further everywhere $z(\boldsymbol{\gamma})$ denotes the number of zero coordinates of the vector $\boldsymbol{\gamma}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right) \in F_{q^{m}}$. Moreover, for any $s \in\{0,1, \ldots, n\}$ we have the set

$$
M_{s} \equiv\left\{\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 n}\right) \in M \mid z(\tilde{\boldsymbol{\alpha}})=s\right\} .
$$

It should be noted that for $n \equiv 0(\bmod 2)$ or $q \equiv 0(\bmod 2)$ the set M_{n} does not exist. It is clear that $M_{s} \cap M_{t}=\emptyset \Longleftrightarrow s \neq t$ and

$$
M=\bigcup_{s} M_{s} .
$$

We denote by $E_{q}(n, s)$ the minimal complexity of the linearized covering of the set M_{s}, and by $E_{q}(n)$ the complexity of the shortest covering of M by cosets that are entirely contained in one of the sets $M_{s}, s=0,1, \ldots, n$.

Our goal is to evaluate the values of $E_{q}(n, s)$ and $E_{q}(n)$.
Theorem 1. When $n \equiv 1(\bmod 2)$ and $q \equiv 1(\bmod 2)$, then

$$
E_{q}(n, s) \leqslant\left\{\begin{array}{lll}
C_{n}^{s}(q-1)^{2(n-s)} 2^{s}, & \text { if } & s<n, \\
2^{n}, & \text { if } & s=n .
\end{array}\right.
$$

$$
\begin{gathered}
E_{q}(n, s) \geqslant \begin{cases}C_{n}^{s}(q-1)^{2(n-s)}\left(2-\frac{1}{q}\right)^{s}, & \text { if } s<n \text { and } b \neq 0, \\
\frac{1}{q} C_{n}^{s}(q-1)^{2(n-s)}\left(2-\frac{1}{q}\right)^{s}, & \text { if } s<n \text { and } b=0, \\
\left(2-\frac{1}{q}\right)^{s}, & \text { if } s=n \text { and } b=0 .\end{cases} \\
E_{q}(n) \leqslant \begin{cases}{\left[(q-1)^{2}+2\right]^{n}-2^{n},} & \text { if } b \neq 0, \\
{\left[(q-1)^{2}+2\right]^{n},} & \text { if } b=0 .\end{cases} \\
E_{q}(n) \geqslant \begin{cases}{\left[(q-1)^{2}+\left(2-\frac{1}{q}\right)\right]^{n}-\left(2-\frac{1}{q}\right)^{n},} & \text { if } b \neq 0, \\
\frac{1}{q}\left[(q-1)^{2}+\left(2-\frac{1}{q}\right)\right]^{n}+\frac{q-1}{q}\left(2-\frac{1}{q}\right)^{n}, & \text { if } b=0 .\end{cases}
\end{gathered}
$$

Theorem 2. When $n \equiv 0(\bmod 2)$ or $q \equiv 0(\bmod 2)$, then

$$
E_{q}(n, s) \leqslant \begin{cases}(q-1)^{2(n-1)}, & \text { if } s=0, \\ C_{n-1}^{s}\left(2^{s}-2\right)(q-1)^{2(n-s)} q^{-1}+o\left(q^{2(n-s)-1}\right), & \text { if } 0<s<n-1, \\ (q-1)^{2}\left(2^{s}-2\right), & \text { if } s=n-1 \text { and } b \neq 0, \\ \left(q^{2}-2 q+3\right)\left(2^{s}-2\right)+2, & \text { if } s=n-1 \text { and } b=0 ; \\ E_{q}(n) \leqslant(q-1)^{2(n-1)}+o\left(q^{2(n-1)}\right) .\end{cases}
$$

Proof of Theorem 1. Let $n \equiv 1(\bmod 2)$ and $q \equiv 1(\bmod 2)$. Then the nondegenerate linear transformation

$$
\left\{\begin{array}{l}
y_{1}=x_{1}+x_{4}, \\
y_{2}=x_{4}+x_{7}, \\
\quad \vdots \\
y_{n}=x_{3 n-2}+x_{1}, \\
z_{1}=x_{2}+x_{5}, \\
z_{2}=x_{5}+x_{8}, \\
\quad \vdots \\
z_{n}=x_{3 n-1}+x_{2}, \\
t_{i}=x_{3 i}, \quad i=\overline{1, n},
\end{array}\right.
$$

converts Eq. (2) into equation

$$
y_{1} z_{1} t_{1}+y_{2} z_{2} t_{2}+\cdots+y_{n} z_{n} t_{n}=b .
$$

It is obvious that the last equation is a particular case of equation

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{k}+x_{k+1} x_{k+2} \cdots x_{2 k}+\cdots+x_{k(n-1)+1} x_{k(n-1)+2} \cdots x_{k n}=b \tag{4}
\end{equation*}
$$

when $k=3$. The Eq. (4) is considered in [9] and

- N stands for the set of all solutions of Eq. (4);
- N_{s} stands the set of all solutions of Eq. (4), for which exactly $s, 0 \leqslant s \leqslant n$, of n products $x_{k(i-1)+1} x_{k(i-1)+2} \cdots x_{k(i-1)+(k-1)}(i=1,2, \ldots, n)$ are equal to zero;
- $L_{q}^{k}(n, s)$ denotes the complexity of the shortest linearized covering of the set N_{s};
- $L_{q}^{k}(n)$ denotes the complexity of the covering of the set N by cosets, all vectors of which are entirely contained in one set $N_{s}, 0 \leqslant s \leqslant n$, the following estimates are obtained:

$$
\begin{gathered}
L_{q}^{k}(n, s) \leqslant \begin{cases}C_{n}^{s}(q-1)^{(k-1)(n-s)}(k-1)^{s}, & \text { if } s<n, \\
(k-1)^{n}, & \text { if } s=n ;\end{cases} \\
L_{q}^{k}(n, s) \geqslant \begin{cases}C_{n}^{s}(q-1)^{(k-1)(n-s)}\left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{s}, & \text { if } s<n \text { and } b \neq 0, \\
\frac{1}{q} C_{n}^{s}(q-1)^{(k-1)(n-s)}\left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{s}, & \text { if } s<n \text { and } b=0, \\
\left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{s}, & \text { if } s=n \text { and } b=0 ;\end{cases} \\
L_{q}^{k}(n) \geqslant \begin{cases}L_{q}^{k}(n) \leqslant \begin{cases}{\left[(q-1)^{k-1}+(k-1)\right]^{n}-(k-1)^{n},} & \text { if } b \neq 0, \\
{\left[(q-1)^{k-1}+(k-1)\right]^{n},} & \text { if } b=0 ;\end{cases} \\
{\left[(q-1)^{k-1}+\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right]^{n}-\left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{n},} \\
\frac{1}{q}\left[(q-1)^{k-1}+\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right]^{n}+\frac{q-1}{q}\left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{n},\end{cases} \\
\text { if if } b=0 .
\end{gathered}
$$

From the above, it is clear that for $n \equiv 1(\bmod 2)$ and $q \equiv 1(\bmod 2)$ and $k=3$ we have the following identities:

$$
M \equiv N, \quad M_{s} \equiv N_{s}, \quad E_{q}(n, s) \equiv L_{q}^{3}(n, s), \quad E_{q}(n) \equiv L_{q}^{3}(n)
$$

and, consequently, the estimates of Theorem 1. Note that the problem of the minimal linearized covering for $y_{1} z_{1} t_{1}+y_{2} z_{2} t_{2}+\cdots+y_{n} z_{n} t_{n}=b$ was solved in [8].

Theorem 1 is completely proved.
On the Number of Solutions of Certain Equations and Systems of Equations over a Finite Field.

Lemmal.

(i) The number of solutions of the equation $x_{1}+x_{2}+\cdots+x_{k}=0$ over the multiplicative group F_{q}^{*} of the finite field F_{q} is equal to

$$
\frac{(q-1)\left[(q-1)^{k-1}+(-1)^{k}\right]}{q}
$$

(ii) Over the multiplicative group F_{q}^{*} the inequality $x_{1}+x_{2}+\cdots+x_{k} \neq 0$ has exactly $\frac{(q-1)\left[(q-1)^{k}+(-1)^{k+1}\right]}{q}$ solutions.

Proof. We denote by s_{k} the number of solutions of the equation $x_{1}+x_{2}+\cdots+x_{k}=0$ in the group F_{q}^{*}. It is clear that the equation $x_{1}=0$ has no solutions in F_{q}^{*} and, therefore, $s_{1}=0$. Consider the general equation $x_{1}+x_{2}+\cdots+x_{k}=0$
for $k>1$. The variables of the latter can not take zero values, therefore, assigning the values $\alpha_{i} \in F_{q}^{*}$ to all variables $x_{i}(i=1,2, \ldots, k-1)$, we must require that $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k-1} \neq 0$, and the number of such different vectors $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}\right)$ coincides with s_{k} and is equal to $(q-1)^{k-1}-s_{k-1}$. Thus $s_{1}=0$ and $s_{k}=(q-1)^{k-1}-s_{k-1}$ for $k>1$. Then

$$
\begin{aligned}
s_{k}= & (q-1)^{k-1}-(q-1)^{k-2}+(q-1)^{k-3}-\cdots-(-1)^{k}(q-1)= \\
& =\sum_{i=1}^{k-1}(-1)^{i-1}(q-1)^{k-i}=\frac{(q-1)\left[(q-1)^{k-1}+(-1)^{k}\right]}{q}
\end{aligned}
$$

Having the value s_{k} for any positive integer k, we can find the number of solutions of the inequality $x_{1}+x_{2}+\cdots+x_{k} \neq 0$ in the group F_{q}^{*}. It is obvious that it is equal to

$$
(q-1)^{k}-s_{k}=\frac{(q-1)\left[(q-1)^{k}+(-1)^{k+1}\right]}{q}
$$

Lemma 2. The number of solutions of systems

$$
\left\{\begin{array}{l}
x_{i} y_{i}=0, \quad i=1,2, \ldots, k \tag{5}\\
\left(x_{1}+x_{2}+\cdots+x_{k}\right)\left(y_{1}+y_{2}+\cdots+y_{k}\right)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x_{i} y_{i}=0, \quad i=1,2, \ldots, k \tag{6}\\
\left(x_{1}+x_{2}+\cdots+x_{k}\right)\left(y_{1}+y_{2}+\cdots+y_{k}\right) \neq 0
\end{array}\right.
$$

over F_{q} are equal to

$$
\begin{aligned}
& {\left[(2 q-1)^{k+1}+2(q-1)^{k+2}+(-1)^{k+1}(q-1)^{2}\right] \cdot q^{-2}} \\
& \quad(q-1)^{2} \cdot\left[(2 q-1)^{k}-2(q-1)^{k}+(-1)^{k}\right] \cdot q^{-2}
\end{aligned}
$$

Proof. We consider system (5). If $x_{i}=\alpha_{i} \in F_{q}^{*}$ for $i=1,2, \ldots, k$, then $y_{1}=y_{2}=\cdots=y_{k}=0$ and the vector $(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \underbrace{0,0, \ldots, 0}_{k})$ is a solution of (5), this gives us $(q-1)^{k}$ solutions. Further, for a fixed number $s(1 \leqslant s \leqslant k)$ suppose $x_{1}=x_{2}=\cdots=x_{s}=0$ and $x_{i}=\alpha_{i} \in F_{q}^{*}$ for $i=s+1, \ldots, k$. Then we have $y_{s+1}=y_{s+2}=\cdots=y_{k}=0$ and the last equation of system (5) will have the following form:

$$
\begin{equation*}
\left(\sum_{i=s+1}^{k} \alpha_{i}\right) \cdot\left(y_{1}+y_{2}+\cdots+y_{s}\right)=0 \tag{7}
\end{equation*}
$$

If $\sum_{i=s+1}^{k} \alpha_{i}=0$, then the Eq. (7) has q^{s} solutions, otherwise it has q^{s-1} solutions. The number of different $\left(\alpha_{s+1}, \alpha_{s+2}, \ldots, \alpha_{k}\right)$, for which $\sum_{i=s+1}^{k} \alpha_{i}=0$, is equal to $(q-1)\left[(q-1)^{k-s-1}+(-1)^{k-s}\right] q^{-1}$ (Lemma 1). And the number of vectors satisfying the condition $\sum_{i=s+1}^{k} \alpha_{i} \neq 0$ is equal to $(q-1)\left[(q-1)^{k-s}+(-1)^{k-s+1}\right] q^{-1}$.

Consequently, the total number of solutions of Eq. (7) is equal to

$$
\begin{gathered}
\frac{(q-1)\left[(q-1)^{k-s-1}+(-1)^{k-s}\right]}{q} \cdot q^{s}+\frac{(q-1)\left[(q-1)^{k-s}+(-1)^{k-s+1}\right]}{q} \cdot q^{s-1}= \\
=(2 q-1)(q-1)^{k-s} q^{s-2}+(q-1)^{2}(-1)^{k-s} q^{s-2}
\end{gathered}
$$

After combining all possible cases, we find that the number of solutions of system (5) is equal to

$$
\begin{gathered}
T_{k} \equiv(q-1)^{k}+\sum_{i=1}^{k} C_{k}^{i}\left[(2 q-1)(q-1)^{k-i} q^{i-2}+(q-1)^{2}(-1)^{k-i} q^{i-2}\right]= \\
=\left[(2 q-1)^{k+1}+2(q-1)^{k+2}+(-1)^{k+1}(q-1)^{2}\right] \cdot q^{-2}
\end{gathered}
$$

Note that in F_{q}^{2} the number of solutions of the equation $x y=0$ is equal to $(2 q-1)$. Therefore, the system $\left\{x_{i} y_{i}=0, i=1,2, \ldots, k\right.$, has $(2 q-1)^{k}$ solutions in $F_{q}^{2 k}$. Then the number of solutions of system (6) is equal to

$$
(2 q-1)^{k}-T_{k}=\frac{(q-1)^{2} \cdot\left[(2 q-1)^{k}-2(q-1)^{k}+(-1)^{k}\right]}{q^{2}}
$$

Proof of Theorem 1.

Canonical Covering. Let $n \equiv 0(\bmod 2)$ or $q \equiv 0(\bmod 2)$. For the vectors $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right), \boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}\right) \in F_{q}^{n-1}$ the product $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}$ is defined by the equality $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\left(\alpha_{1} \beta_{1}, \alpha_{2} \beta_{2}, \ldots, \alpha_{n-1} \beta_{n-1}\right)$. It is easy to verify that for a fixed vector $\boldsymbol{\gamma} \in F_{q}^{n-1}$ the number of ordered pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ such that $\boldsymbol{\alpha}, \boldsymbol{\beta} \in F_{q}^{n-1}$ and $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\boldsymbol{\gamma}$ is equal to $(2 q-1)^{z(\boldsymbol{\gamma})}(q-1)^{n-1-z(\boldsymbol{\gamma})}$. Hence, if $\boldsymbol{\alpha}, \boldsymbol{\beta} \in F_{q}^{n-1}$ satisfy the equatin $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\boldsymbol{\gamma}$ and $\left(\sum_{i=1}^{n-1}(-1)^{i-1} \alpha_{i}\right)\left(\sum_{i=1}^{n-1}(-1)^{i-1} \beta_{i}\right)=\omega$, where $\boldsymbol{\gamma} \in F_{q}^{n-1}$ and $\omega \in F_{q}$, then we say that the vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generates a vector $(\boldsymbol{\gamma}, \omega) \in F_{q}^{n}$, and this relation will be written by $(\boldsymbol{\alpha}, \boldsymbol{\beta}) \rightarrow(\boldsymbol{\gamma}, \omega)$.

Now, for Eq. (3) we construct a system of cosets covering the set M_{s}. Cosets are defined using systems of linear equations over the field F_{q}. The set M_{s}, where $0 \leqslant s \leqslant n-1$, is covered by the sets of the solutions of the following systems of linear equations:

$$
\left\{\begin{array}{l}
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=1,2, \ldots, n-1, \tag{8}\\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=1,2, \ldots, n-1, \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b,
\end{array}\right.
$$

where the vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generates a vector $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}, \omega\right) \neq(0,0, \ldots, 0,0) \in$ F_{q}^{n} and $z(\boldsymbol{\alpha} \boldsymbol{\beta})=z(\boldsymbol{\gamma})=s$.

If $s=n-1$ and $b=0$ in Eq. (3), then we add sets of solutions of the following systems to the solution sets of systems (8):

$$
\begin{cases}x_{3 i-2}+x_{3 i+1}=\alpha_{i}, & i=1,2, \ldots, n-1, \tag{9}\\ x_{3 i-1}+x_{3 i+2}=\beta_{i}, & i=1,2, \ldots, n-1,\end{cases}
$$

where the vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generates a vector $(0,0, \ldots, 0,0) \in F_{q}^{n}$.
It is obvious that for different vector pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ the sets of solutions of the above constructed systems of equations lie in M_{s}, are pairwise disjoint and the union of all these sets coincides with M_{s} and hence it is a disjoint covering of this set.

The ranks of systems (8) and (9) are equal to $2(n-1)+1$ and $2(n-1)$ respectively. Therefore, the number of solutions of these systems is equal to q^{n+1} and q^{n+2} respectively. The number of vectors $\boldsymbol{\gamma} \in F_{q}^{n-1}$ with $z(\boldsymbol{\gamma})=s$, where $0 \leqslant s \leqslant n-1$, is equal to $C_{n-1}^{s}(q-1)^{n-1-s}$. For a fixed $\boldsymbol{\gamma}$ with $z(\boldsymbol{\gamma})=s$ there exist exactly $(2 q-1)^{s}(q-1)^{n-1-s}$ vector pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\boldsymbol{\gamma}$. Therefore,

$$
\left|M_{s}\right|=C_{n-1}^{s}(q-1)^{2(n-1-s)}(2 q-1)^{s} q^{n+1}, \quad \text { if } 0 \leqslant s<n-1 .
$$

By Lemma 2 we obtain that exactly

$$
(q-1)^{2} \cdot\left[(2 q-1)^{n-1}-2(q-1)^{n-1}+(-1)^{n-1}\right] q^{-2}
$$

vector pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generate nonzero vectors $(0, \ldots, 0, \omega) \in F_{q}^{n}$, and exactly

$$
\left[(2 q-1)^{n}+2(q-1)^{n+1}+(-1)^{n}(q-1)^{2}\right] q^{-2}
$$

vector pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generate a zero vector $(0,0, \ldots, 0,0) \in F_{q}^{n}$. Therefore,

$$
\begin{array}{rlr}
\left|M_{n-1}\right| & =(q-1)^{2} \cdot\left[(2 q-1)^{n-1}-2(q-1)^{n-1}+(-1)^{n-1}\right] q^{-2} q^{n+1}, \quad \text { if } b \neq 0, \\
\left|M_{n-1}\right| & =(q-1)^{2} \cdot\left[(2 q-1)^{n-1}-2(q-1)^{n-1}+(-1)^{n-1}\right] q^{-2} q^{n+1}+ \\
& +\left[(2 q-1)^{n}+2(q-1)^{n+1}+(-1)^{n}(q-1)^{2}\right] q^{-2} q^{n+2}, & \text { if } b=0 .
\end{array}
$$

We also see that

$$
\begin{aligned}
|M| & =\left[\sum_{s=0}^{n-2} C_{n-1}^{s}(q-1)^{2(n-1-s)}(2 q-1)^{s}\right] q^{n+1}+ \\
& +(q-1)^{2} \cdot\left[(2 q-1)^{n-1}-2(q-1)^{n-1}+(-1)^{n-1}\right] q^{-2} q^{n+1}= \\
& =\left[q^{2 n}-(2 q-1)^{n}-2(q-1)^{n+1}+(-1)^{n-1}(q-1)^{2}\right] q^{n-1}, \quad \text { if } b \neq 0, \\
|M| & =\left[q^{2 n}-(2 q-1)^{n}-2(q-1)^{n+1}+(-1)^{n-1}(q-1)^{2}\right] q^{n-1}+ \\
& +\left[(2 q-1)^{n}+2(q-1)^{n+1}+(-1)^{n}(q-1)^{2}\right] q^{-2} q^{n+2}= \\
& =\left[q^{2 n}+(q-1)(2 q-1)^{n}+2(q-1)^{n+2}+(-1)^{n}(q-1)^{3}\right] q^{n-1}, \quad \text { if } b=0 .
\end{aligned}
$$

Now we construct the enlargement of the covering described above. Each $(\boldsymbol{\gamma}, \omega) \in F_{q}^{n}$ is associated with a set of linear systems. Fix the vector $(\boldsymbol{\gamma}, \omega)=$ $=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n-1}, \omega\right)$, where $z(\boldsymbol{\gamma})=s$. If $s=0$, then the corresponding systems are formed in the same way as a system of the (8) type.

Suppose that $0<s \leqslant n-1$. Without loss of generality, we can assume that $\gamma_{1}=\gamma_{2}=\cdots=\gamma_{s}=0$ and $\gamma_{i} \neq 0, i=s+1, \ldots, n-1$. For each vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})=\left(\alpha_{s+1}, \ldots, \alpha_{n-1}, \beta_{s+1}, \ldots, \beta_{n-1}\right)$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\boldsymbol{\gamma}=\left(\gamma_{s+1}, \ldots, \gamma_{n-1}\right)$, the set of systems of equations is constructed as follows. We write $\alpha \equiv \sum_{i=s+1}^{n-1}(-1)^{i-1} \alpha_{i}$ and $\beta \equiv \sum_{i=s+1}^{n-1}(-1)^{i-1} \beta_{i}$.

If $\omega \neq 0$, then for each vector $\left(\mu_{1}, \ldots, \mu_{s}\right) \in F_{2}^{s}$, where $\left(\mu_{1}, \ldots, \mu_{s}\right) \neq(0, \ldots, 0)$ and $\left(\mu_{1}, \ldots, \mu_{s}\right) \neq(1, \ldots, 1)$, and an arbitrary non-zero element $\sigma \in F_{q}$, we construct the following system of equations:

$$
\left\{\begin{array}{l}
x_{3 i-2}+x_{3 i+1}=0 \Longleftrightarrow \mu_{i}=0 \\
x_{3 i-1}+x_{3 i+2}=0 \Longleftrightarrow \mu_{i}=1 \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1 \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1 \\
\sum_{i=1}^{s}(-1)^{i-1} \mu_{i}\left(x_{3 i-2}+x_{3 i+1}\right)+\alpha=\sigma \\
\sum_{i=1}^{s}(-1)^{i-1}\left(\mu_{i} \oplus 1\right)\left(x_{3 i-1}+x_{3 i+2}\right)+\beta=\sigma^{-1} \omega \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

where the symbol \oplus denotes the addition of modulo 2 , and the notation $x_{3 i-2}+x_{3 i+1}=0$ is equivalent to $\mu_{i}=0$ that means the equation $x_{3 i-2}+x_{3 i+1}=0$ is included in the system if and only if $\mu_{i}=0$.

When $\left(\mu_{1}, \ldots, \mu_{s}\right)=(0, \ldots, 0)$ we form the system

$$
\left\{\begin{array}{l}
x_{3 i-2}+x_{3 i+1}=0, \quad i=1,2, \ldots, s \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1 \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1 \\
\sum_{i=1}^{s}(-1)^{i-1}\left(x_{3 i-1}+x_{3 i+2}\right)+\beta=\alpha^{-1} \omega \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

if and only if $\alpha \neq 0$ and when $\left(\mu_{1}, \ldots, \mu_{s}\right)=(1, \ldots, 1)$, then the system

$$
\left\{\begin{array}{l}
x_{3 i-1}+x_{3 i+2}=0, \quad i=1,2, \ldots, s \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1 \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1 \\
\sum_{i=1}^{s}(-1)^{i-1}\left(x_{3 i-2}+x_{3 i+1}\right)+\alpha=\beta^{-1} \omega \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

is constructed if and only if $\beta \neq 0$.
Next, consider the construction of new systems for $\omega=0$. In this case, also for each binary vector $\left(\mu_{1}, \ldots, \mu_{s}\right)$, where $\left(\mu_{1}, \ldots, \mu_{s}\right) \neq(0, \ldots, 0)$ and $\left(\mu_{1}, \ldots, \mu_{s}\right) \neq(1, \ldots, 1)$, we construct a system

$$
\left\{\begin{array}{l}
x_{3 i-2}+x_{3 i+1}=0 \Longleftrightarrow \mu_{i}=0, \\
x_{3 i-1}+x_{3 i+2}=0 \Longleftrightarrow \mu_{i}=1, \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1, \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1, \\
\sum_{i=1}^{s}(-1)^{i-1} \mu_{i}\left(x_{3 i-2}+x_{3 i+1}\right)+\alpha=0, \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

and the system

$$
\left\{\begin{array}{l}
x_{3 i-2}+x_{3 i+1}=0 \Longleftrightarrow \mu_{i}=0 \\
x_{3 i-1}+x_{3 i+2}=0 \Longleftrightarrow \mu_{i}=1 \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1 \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1 \\
\sum_{i=1}^{s}(-1)^{i-1}\left(\mu_{i} \oplus 1\right)\left(x_{3 i-1}+x_{3 i+2}\right)+\beta=0 \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

When $\left(\mu_{1}, \ldots, \mu_{s}\right)=(0, \ldots, 0)$, we compose the system

$$
\left\{\begin{array}{l}
x_{3 i-2}+x_{3 i+1}=0, \quad i=1,2, \ldots, s \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1 \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1 \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

if $\alpha=0$, and in the case $\alpha \neq 0$ we compile the system

$$
\left\{\begin{array}{l}
x_{3 i-2}+x_{3 i+1}=0, \quad i=1,2, \ldots, s \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1 \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1 \\
\sum_{i=1}^{s}(-1)^{i-1}\left(x_{3 i-1}+x_{3 i+2}\right)+\beta=0 \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

For $\left(\mu_{1}, \ldots, \mu_{s}\right)=(1, \ldots, 1)$, we add a system

$$
\left\{\begin{array}{l}
x_{3 i-1}+x_{3 i+2}=0, \quad i=1,2, \ldots, s \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1 \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1 \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

to existing systems if $\beta=0$, otherwise we add the system

$$
\left\{\begin{array}{l}
x_{3 i-1}+x_{3 i+2}=0, \quad i=1,2, \ldots, s \\
x_{3 i-2}+x_{3 i+1}=\alpha_{i}, \quad i=s+1, \ldots, n-1, \\
x_{3 i-1}+x_{3 i+2}=\beta_{i}, \quad i=s+1, \ldots, n-1, \\
\sum_{i=1}^{s}(-1)^{i-1}\left(x_{3 i-2}+x_{3 i+1}\right)+\alpha=0 \\
\gamma_{1} x_{3}+\cdots+\gamma_{n-1} x_{3(n-1)}+\omega x_{3 n}=b
\end{array}\right.
$$

The covering of the set M_{s} constructed above is called canonical.
Now let us estimate the complexity of the canonical covering. The number of different vectors $(\boldsymbol{\alpha}, \boldsymbol{\beta})=\left(\alpha_{s+1}, \ldots, \alpha_{n-1}, \beta_{s+1}, \ldots, \beta_{n-1}\right) \in F_{q}^{2(n-1-s)}$, where $\alpha_{i}, \beta_{i} \in F_{q} \backslash\{0\}$ for all $i=s+1, \ldots, n-1$, for which (according to Lemma 1)
a) $\alpha \equiv \sum_{i=s+1}^{n-1}(-1)^{i-1} \alpha_{i}=0$ and $\beta \equiv \sum_{i=s+1}^{n-1}(-1)^{i-1} \beta_{i}=0, \quad$ is equal to

$$
(q-1)^{2}\left[(q-1)^{n-s-2}+(-1)^{n-s-1}\right]^{2} q^{-2}
$$

b) $\alpha=0$ and $\beta \neq 0$, is equal to

$$
(q-1)^{2}\left[(q-1)^{n-s-2}+(-1)^{n-s-1}\right]\left[(q-1)^{n-s-1}+(-1)^{n-s}\right] q^{-2}
$$

c) $\alpha \neq 0$ and $\beta=0$, is equal to $(q-1)^{2}\left[(q-1)^{n-s-1}+(-1)^{n-s}\right]\left[(q-1)^{n-s-2}+(-1)^{n-s-1}\right] q^{-2} ;$
d) $\alpha \neq 0$ and $\beta \neq 0$, is equal to

$$
(q-1)^{2}\left[(q-1)^{n-s-1}+(-1)^{n-s}\right]^{2} q^{-2}
$$

Then, for a fixed $0 \neq \omega \in F_{q}$ and $(\boldsymbol{\alpha}, \boldsymbol{\beta})=\left(\alpha_{s+1}, \ldots, \alpha_{n-1}, \beta_{s+1}, \ldots, \beta_{n-1}\right) \in$ $\in F_{q}^{2(n-1-s)}$ the number of new systems, when
a) $\alpha=0$ and $\beta=0$, is equal to $(q-1)\left(2^{s}-2\right)$;
b) $\alpha=0$ and $\beta \neq 0$, is equal to $(q-1)\left(2^{s}-2\right)+1$;
c) $\alpha \neq 0$ and $\beta=0$, is equal to $(q-1)\left(2^{s}-2\right)+1$;
d) $\alpha \neq 0$ and $\beta \neq 0$, is equal to $(q-1)\left(2^{s}-2\right)+2$;
and for $\omega=0$ the number of new systems is equal to $2\left(2^{s}-2\right)+2$ (for all α and β).
Denote by D_{s} the length of the canonical covering. It is clear that $D_{0}=(q-1)^{2(n-1)}$. If $0<s<n-1$, then

$$
\begin{aligned}
& D_{s}=C_{n-1}^{s} \frac{(q-1)^{2}\left[(q-1)^{n-s-2}+(-1)^{n-s-1}\right]^{2}}{q^{2}}\left[(q-1)^{2}\left(2^{s}-2\right)+2\left(2^{s}-2\right)+2\right]+ \\
& +2 C_{n-1}^{s} \frac{(q-1)^{2}\left[(q-1)^{n-s-2}+(-1)^{n-s-1}\right]\left[(q-1)^{n-s-1}+(-1)^{n-s}\right]}{q^{2}} \times \\
& \quad \times\left[(q-1)^{2}\left(2^{s}-2\right)+(q-1)+2\left(2^{s}-2\right)+2\right]+ \\
& +C_{n-1}^{s} \frac{(q-1)^{2}\left[(q-1)^{n-s-1}+(-1)^{n-s}\right]^{2}}{q^{2}}\left[(q-1)^{2}\left(2^{s}-2\right)+2(q-1)+2\left(2^{s}-2\right)+2\right] .
\end{aligned}
$$

Simplifying the last expression, we get

$$
\begin{gathered}
D_{s}=C_{n-1}^{s}\left(2^{s}-2\right)(q-1)^{2(n-s)} q^{-1}+C_{n-1}^{s}\left(2^{s}-1\right)(q-1)^{2(n-s)-2}+ \\
+2 C_{n-1}^{s}(-1)^{n-s}(q-1)^{n-s-1} q^{-1}=C_{n-1}^{s}\left(2^{s}-2\right)(q-1)^{2(n-s)} q^{-1}+o\left(q^{2(n-s)-1}\right)
\end{gathered}
$$

Finally, $D_{s}=C_{n-1}^{s}\left(2^{s}-2\right)(q-1)^{2(n-s)} q^{-1}+o\left(q^{2(n-s)-1}\right)$ when $0<s<n-1$, and if $s=n-1$, then

$$
D_{n-1}= \begin{cases}(q-1)^{2}\left(2^{s}-2\right), & \text { if } b \neq 0 \\ \left(q^{2}-2 q+3\right)\left(2^{s}-2\right)+2, & \text { if } b=0\end{cases}
$$

Finally we have

$$
D_{s}= \begin{cases}(q-1)^{2(n-1)}, & \text { if } s=0 \\ C_{n-1}^{s}\left(2^{s}-2\right)(q-1)^{2(n-s)} q^{-1}+o\left(q^{2(n-s)-1}\right), & \text { if } 0<s<n-1, \\ (q-1)^{2}\left(2^{s}-2\right), & \text { if } s=n-1 \text { and } b \neq 0 \\ \left(q^{2}-2 q+3\right)\left(2^{s}-2\right)+2, & \text { if } s=n-1 \text { and } b=0\end{cases}
$$

Obviously, the quantity D_{s} is the upper bound for $E_{q}(n, s)$. The number of cosets contained entirely in one of the sets $M_{s}, s=0,1, \ldots, n-1$, is equal to

$$
(q-1)^{2(n-1)}+\sum_{s=1}^{n-1} D_{s}=(q-1)^{2(n-1)}+o\left(q^{2(n-1)}\right)
$$

which is an upper bound for $E_{q}(n)$.
Theorem 2 is completely proved.

REFERENCES

1. Lidl R., Niederreiter H. Finite Fields. Encyclopedia of Mathematics and Its Applications. V. 20: Section Algebra, 1983.
2. Alexanyan A.A. Realization of Boolean Functions by Disjunctions of Products of Linear Forms. // Soviet Math. Dokl., 1989, v. 39, № 1, p. 131-135 (in Russian).
3. Alexanyan A.A. Disjunctive Normal Forms over Linear Functions. Theory and Applications. Yer.: YSU Press, 1990 (in Russian).
4. Gabrielyan V. On Metric Characteristics Associated with Coverings of Subsets of Finite Fields by Cosets of Linear Subspaces. Preprint 04-0603. Yer.: Institute for Informatics and Automation Problems NAS of Armenia, 2004 (in Russian).
5. Nurijanyan H.K. On the Length of the Shortest Linearized Covering for "Almost All" Subsets in Finite Field. // Reports of NAS RA, 2010, v. 110, № 1, p. 30-34.
6. Alexanian A., Gabrielyan V. Coverings of Simmetric Subsets in Finite Fields with Cosets of Linear Subspaces. // Algebra, Geometry and Their Applications, YSU, 2004, v. 3-4, p. 110-124.
7. Alexanyan A.A., Serobyan R.K. Coverings Connected with Quadratic Equations over a Finite Field. // Dokl. Acad. Nauk Armenii, 1992, v. 93, № 1, p. 6-10 (in Russian).
8. Aleksanyan A., Papikian M. On Coset Coverings of Solutions of Homogeneous Cubic Equations over Finite Fields. // The Electronic Journal of Combinatorics, 2001, v. 8, № 22, p. 1-9.
9. Gabrielyan V. On the Complexity of Covering a System of Cosets of a Single Equation over a Finite Field. Preprint 04-0602. Yer.: Institute for Informatics and Automation Problems NAS of Armenia, 2004 (in Russian).
10. Gabrielyan V.P. Linearized Coverings of One Type Equations of Higher Degree over Finite Fields. // Reports of NAS RA, 2006, v. 106, № 2, p. 101-107 (in Russian).
11. Gabrielyan V.P. Cubical Diagonal Equation over Finite Fields of Characteristic 2. // Reports of NAS RA, 2010, v. 110, № 3, p. 220-227 (in Russian).
12. Alexanian A.A., Minasyan A.V. An Upper Bound for the Complexity of Coset Covering of Subsets in a Finite Field. // Reports of NAS RA, 2017, v. 117, № 4, p. 287-291.
13. Minasyan A.V. On the Minimal Coset Covering of the Set of Singular and of the Set of Nonsingular Matrices. // Proceedings of the YSU. Physical and Mathematical Sciences, 2018, v. 52, № 1, p. 8-11.
14. Minasyan A.V. On the Minimal Coset Covering for a Special Subset in Direct Product of Two Finite Fields. // Proceedings of the YSU. Physical and Mathematical Sciences, 2017, v. 51, № 3, p. 236-240.
15. Gabrielyan V.P. Linearized Coverings for Sets of Special Solutions of One Cubic Equation over a Finite Field. // Reports of NAS RA, 2018, v. 118, № 2, p. 115-118.

[^0]: * E-mail: var.gabrielyan@ysu.am

