PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2018, **52**(3), p. 180–190

Informatics

ON A LINEARIZED COVERINGS OF A CUBIC HOMOGENEOUS EQUATION OVER A FINITE FIELD. UPPER BOUNDS

V. P. GABRIELYAN *

Chair of Discrete Mathematics and Theoretical Informatics YSU, Armenia

We obtain upper bounds of the complexity of linearized coverings for some special solutions of the equation

 $x_1x_2x_3 + x_2x_3x_4 + \dots + x_{3n}x_1x_2 + x_1x_3x_5 + x_4x_6x_8 + \dots + x_{3n-2}x_{3n}x_2 = b$ over an arbitrary finite field.

MSC2010: Primary 97H60; Secondary 14N20, 51E21.

Keywords: linear algebra, finite field, coset of linear subspace, linearized covering.

Introduction. Throughout this paper F_q stands for a finite field with q elements [1] (q-power of a prime number), and F_q^n stands for an n-dimensional linear space over $F_q : F_q^n \equiv \{\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) | \alpha_i \in F_q, i = 1, 2, ..., n\}$. If L is a linear subspace in F_q^n and $\alpha \in F_q^n$, then the set $\alpha + L = \{\alpha + x | x \in L\}$ is a *coset* (or translate) of the subspace L and dim $(\alpha + L)$ coincides with dim L. An equivalent definition: a subset $H \subseteq F_q^n$ is a coset, if whenever $h_1, h_2, ..., h_m$ are in H, so is any affine combination of them, i.e. $\sum_{i=1}^m \lambda_i h_i \in H$ for any $\lambda_1, \lambda_2, ..., \lambda_m$ in F_q such that $\sum_{i=1}^m \lambda_i = 1$. It can be readily verified that any m-dimensional coset in F_q^n can be represented as a set of solutions of a certain system of linear equations over F_q of rank n - m and vice versa. D e finition n. Let M be a subset in F_q^n and $H_1, H_2, ..., H_m \subseteq M$ be cosets

of linear subspaces in F_q^n . If $M = \bigcup_{i=1}^m H_i$, then we say that $\{H_1, H_2, \dots, H_m\}$ is a linearized covering of M of complexity (or length) m. The linearized covering of M with minimal length is the *shortest* linearized covering of M.

The problem of the shortest (minimal) linearized covering of the set of solutions of a polynomial equation over a finite field was first investigated in [2, 3] for a simple field F_2 , and the theory of linearized disjunctive normal forms was introduced. Some metric characteristics of the linearized coverings of subsets of a finite

^{*} E-mail: var.gabrielyan@ysu.am

field were investigated in [4, 5]. The problem of a linearized covering of symmetric subsets of a finite field was solved in [6], and for the sets of solutions of quadratic and some higher-degree equations over a finite field was solved in [7–15].

Main Theorem. For given $b \in F_q$ and $n \ge 1$ consider an equation

$$x_1x_2x_3 + x_2x_3x_4 + \dots + x_{3n}x_1x_2 + x_1x_3x_5 + x_4x_6x_8 + \dots + x_{3n-2}x_{3n}x_2 = b \quad (1)$$

over F_q . We denote by M the set of solutions of (1). It is clear that $M \subseteq F_q^{3n}$. We rewrite Eq. (1) in the following form:

$$(x_1+x_4)(x_2+x_5)x_3+(x_4+x_7)(x_5+x_8)x_6+\dots+(x_{3n-2}+x_1)(x_{3n-1}+x_2)x_{3n}=b.$$
(2)

If $n \equiv 0 \pmod{2}$ or $q \equiv 0 \pmod{2}$, then

$$x_{3n-2} + x_1 = \sum_{i=1}^{n-1} (-1)^{i-1} (x_{3i-2} + x_{3i+1})$$
 and $x_{3n-1} + x_2 = \sum_{i=1}^{n-1} (-1)^{i-1} (x_{3i-1} + x_{3i+2})$,

and Eq. (2) can be rewritten in the form

$$(x_{1} + x_{4})(x_{2} + x_{5})x_{3} + (x_{4} + x_{7})(x_{5} + x_{8})x_{6} + \cdots$$

$$\cdots + (x_{3n-5} + x_{3n-2})(x_{3n-4} + x_{3n-1})x_{3(n-1)} +$$

$$+ \left[\sum_{i=1}^{n-1} (-1)^{i-1}(x_{3i-2} + x_{3i+1})\right] \left[\sum_{i=1}^{n-1} (-1)^{i-1}(x_{3i-1} + x_{3i+2})\right]x_{3n} = b.$$
(3)

For any vector $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_{3n}) \in F_{q^{3n}}$ when $n \equiv 1 \pmod{2}$ and $q \equiv 1 \pmod{2}$, we construct a new vector

$$\tilde{\boldsymbol{\alpha}} = ((\alpha_1 + \alpha_4)(\alpha_2 + \alpha_5), (\alpha_4 + \alpha_7)(\alpha_5 + \alpha_8), \dots, (\alpha_{3n-2} + \alpha_1)(\alpha_{3n-1} + \alpha_2)) \in F_q^n,$$

and when $n \equiv 0 \pmod{2}$ or $q \equiv 0 \pmod{2}$, we construct a vector $\tilde{\boldsymbol{\alpha}} = ((\alpha_1 + \alpha_4)(\alpha_2 + \alpha_5), (\alpha_4 + \alpha_7)(\alpha_5 + \alpha_8), \dots, (\alpha_{3n-5} + \alpha_{3n-2})(\alpha_{3n-4} + \alpha_{3n-1})) \in F_q^{n-1}.$
Further everywhere $z(\boldsymbol{\gamma})$ denotes the number of zero coordinates of the vector $\boldsymbol{\gamma} = (\gamma_1, \gamma_2, \dots, \gamma_m) \in F_q^m$. Moreover, for any $s \in \{0, 1, \dots, n\}$ we have the set

$$M_s \equiv \{ \boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_{3n}) \in M \, | \, z(\tilde{\boldsymbol{\alpha}}) = s \}.$$

It should be noted that for $n \equiv 0 \pmod{2}$ or $q \equiv 0 \pmod{2}$ the set M_n does not exist. It is clear that $M_s \cap M_t = \emptyset \iff s \neq t$ and

$$M=\bigcup_{s}M_{s}.$$

We denote by $E_q(n,s)$ the minimal complexity of the linearized covering of the set M_s , and by $E_q(n)$ the complexity of the shortest covering of Mby cosets that are entirely contained in one of the sets M_s , s = 0, 1, ..., n.

Our goal is to evaluate the values of $E_q(n,s)$ *and* $E_q(n)$ *.*

Theorem 1. When $n \equiv 1 \pmod{2}$ and $q \equiv 1 \pmod{2}$, then

$$E_q(n,s) \leqslant \left\{ egin{array}{cc} C_n^s(q-1)^{2(n-s)}2^s, & {
m if} & s < n, \ 2^n, & {
m if} & s = n. \end{array}
ight.$$

$$E_q(n,s) \ge \begin{cases} C_n^s (q-1)^{2(n-s)} \left(2 - \frac{1}{q}\right)^s, & \text{if } s < n \text{ and } b \neq 0, \\ \frac{1}{q} C_n^s (q-1)^{2(n-s)} \left(2 - \frac{1}{q}\right)^s, & \text{if } s < n \text{ and } b = 0, \\ \left(2 - \frac{1}{q}\right)^s, & \text{if } s = n \text{ and } b = 0. \end{cases}$$

$$E_q(n) \le \begin{cases} \left[(q-1)^2 + 2\right]^n - 2^n, & \text{if } b \neq 0, \\ \left[(q-1)^2 + 2\right]^n, & \text{if } b = 0. \end{cases}$$

$$E_q(n) \ge \begin{cases} \left[(q-1)^2 + \left(2 - \frac{1}{q}\right)\right]^n - \left(2 - \frac{1}{q}\right)^n, & \text{if } b \neq 0, \\ \frac{1}{q} \left[(q-1)^2 + \left(2 - \frac{1}{q}\right)\right]^n + \frac{q-1}{q} \left(2 - \frac{1}{q}\right)^n, & \text{if } b = 0. \end{cases}$$

$$E_q(n,s) \leqslant \begin{cases} (q-1)^{2(n-1)}, & \text{if } s = 0, \\ C_{n-1}^s(2^s-2)(q-1)^{2(n-s)}q^{-1} + o(q^{2(n-s)-1}), & \text{if } 0 < s < n-1, \\ (q-1)^2(2^s-2), & \text{if } s = n-1 \text{ and } b \neq 0, \\ (q^2-2q+3)(2^s-2)+2, & \text{if } s = n-1 \text{ and } b = 0; \\ E_q(n) \leqslant (q-1)^{2(n-1)} + o(q^{2(n-1)}). \end{cases}$$

Proof of Theorem 1. Let $n \equiv 1 \pmod{2}$ and $q \equiv 1 \pmod{2}$. Then the nondegenerate linear transformation

$$\begin{cases} y_1 = x_1 + x_4, \\ y_2 = x_4 + x_7, \\ \vdots \\ y_n = x_{3n-2} + x_1, \\ z_1 = x_2 + x_5, \\ z_2 = x_5 + x_8, \\ \vdots \\ z_n = x_{3n-1} + x_2, \\ t_i = x_{3i}, \quad i = \overline{1, n}, \end{cases}$$

converts Eq. (2) into equation

$$y_1 z_1 t_1 + y_2 z_2 t_2 + \dots + y_n z_n t_n = b.$$

It is obvious that the last equation is a particular case of equation

 $x_1x_2\cdots x_k + x_{k+1}x_{k+2}\cdots x_{2k} + \cdots + x_{k(n-1)+1}x_{k(n-1)+2}\cdots x_{kn} = b$ (4) when k = 3. The Eq. (4) is considered in [9] and

• *N* stands for the set of all solutions of Eq. (4);

• N_s stands the set of all solutions of Eq. (4), for which exactly $s, 0 \le s \le n$, of n products $x_{k(i-1)+1}x_{k(i-1)+2}\cdots x_{k(i-1)+(k-1)}$ (i = 1, 2, ..., n) are equal to zero;

• $L_q^k(n,s)$ denotes the complexity of the shortest linearized covering of the set N_s ;

• $L_q^k(n)$ denotes the complexity of the covering of the set N by cosets, all vectors of which are entirely contained in one set N_s , $0 \le s \le n$, the following estimates are obtained:

183

$$L_{q}^{k}(n,s) \leqslant \begin{cases} C_{n}^{s}(q-1)^{(k-1)(n-s)}(k-1)^{s}, & \text{if } s < n, \\ (k-1)^{n}, & \text{if } s = n; \end{cases}$$

$$L_{q}^{k}(n,s) \geqslant \begin{cases} C_{n}^{s}(q-1)^{(k-1)(n-s)} \left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{s}, & \text{if } s < n \text{ and } b \neq 0, \\ \frac{1}{q}C_{n}^{s}(q-1)^{(k-1)(n-s)} \left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{s}, & \text{if } s < n \text{ and } b = 0, \\ \left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{s}, & \text{if } s = n \text{ and } b = 0; \end{cases}$$

$$L_{q}^{k}(n) \leqslant \begin{cases} \left[(q-1)^{k-1}+(k-1)\right]^{n}-(k-1)^{n}, & \text{if } b \neq 0, \\ \left[(q-1)^{k-1}+(k-1)\right]^{n}, & \text{if } b = 0; \end{cases}$$

$$L_{q}^{k}(n) \geqslant \begin{cases} \left[(q-1)^{k-1}+\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right]^{n}-\left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{n}, & \text{if } b \neq 0, \\ \frac{1}{q}\left[(q-1)^{k-1}+\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right]^{n}+\frac{q-1}{q}\left(\frac{q^{k-1}-(q-1)^{k-1}}{q^{k-2}}\right)^{n}, & \text{if } b = 0. \end{cases}$$

From the above, it is clear that for $n \equiv 1 \pmod{2}$ and $q \equiv 1 \pmod{2}$ and k = 3 we have the following identities:

 $M \equiv N$, $M_s \equiv N_s$, $E_q(n,s) \equiv L_q^3(n,s)$, $E_q(n) \equiv L_q^3(n)$

and, consequently, the estimates of Theorem 1. Note that the problem of the minimal linearized covering for $y_1z_1t_1 + y_2z_2t_2 + \cdots + y_nz_nt_n = b$ was solved in [8].

Theorem 1 is completely proved.

On the Number of Solutions of Certain Equations and Systems of Equations over a Finite Field.

Lemma 1.

(*i*) The number of solutions of the equation $x_1 + x_2 + \cdots + x_k = 0$ over the multiplicative group F_q^* of the finite field F_q is equal to

$$\frac{(q-1)\left[(q-1)^{k-1}+(-1)^k\right]}{q}.$$

(*ii*) Over the multiplicative group F_q^* the inequality $x_1 + x_2 + \dots + x_k \neq 0$ has exactly $\frac{(q-1)\left[(q-1)^k + (-1)^{k+1}\right]}{q}$ solutions. **Proof.** We denote by s_k the number of solutions of the equation

Proof. We denote by s_k the number of solutions of the equation $x_1 + x_2 + \cdots + x_k = 0$ in the group F_q^* . It is clear that the equation $x_1 = 0$ has no solutions in F_q^* and, therefore, $s_1 = 0$. Consider the general equation $x_1 + x_2 + \cdots + x_k = 0$

for k > 1. The variables of the latter can not take zero values, therefore, assigning the values $\alpha_i \in F_q^*$ to all variables x_i (i = 1, 2, ..., k - 1), we must require that $\alpha_1 + \alpha_2 + ... + \alpha_{k-1} \neq 0$, and the number of such different vectors $(\alpha_1, \alpha_2, ..., \alpha_{k-1})$ coincides with s_k and is equal to $(q - 1)^{k-1} - s_{k-1}$. Thus $s_1 = 0$ and $s_k = (q - 1)^{k-1} - s_{k-1}$ for k > 1. Then

$$s_k = (q-1)^{k-1} - (q-1)^{k-2} + (q-1)^{k-3} - \dots - (-1)^k (q-1) =$$
$$= \sum_{i=1}^{k-1} (-1)^{i-1} (q-1)^{k-i} = \frac{(q-1)\left[(q-1)^{k-1} + (-1)^k\right]}{q}.$$

Having the value s_k for any positive integer k, we can find the number of solutions of the inequality $x_1 + x_2 + \cdots + x_k \neq 0$ in the group F_q^* . It is obvious that it is equal to

$$(q-1)^{k} - s_{k} = \frac{(q-1)\left\lfloor (q-1)^{k} + (-1)^{k+1} \right\rfloor}{q}.$$

Lemma 2. The number of solutions of systems

$$\begin{cases} x_i y_i = 0, & i = 1, 2, \dots, k, \\ (x_1 + x_2 + \dots + x_k)(y_1 + y_2 + \dots + y_k) = 0 \end{cases}$$
(5)

and

184

$$\begin{cases} x_i y_i = 0, & i = 1, 2, \dots, k, \\ (x_1 + x_2 + \dots + x_k)(y_1 + y_2 + \dots + y_k) \neq 0 \end{cases}$$
(6)

over F_q are equal to

$$\begin{bmatrix} (2q-1)^{k+1} + 2(q-1)^{k+2} + (-1)^{k+1}(q-1)^2 \end{bmatrix} \cdot q^{-2} (q-1)^2 \cdot \begin{bmatrix} (2q-1)^k - 2(q-1)^k + (-1)^k \end{bmatrix} \cdot q^{-2}.$$

Proof. We consider system (5). If $x_i = \alpha_i \in F_q^*$ for i = 1, 2, ..., k, then $y_1 = y_2 = \cdots = y_k = 0$ and the vector $(\alpha_1, \alpha_2, ..., \alpha_k, \underbrace{0, 0, ..., 0}_k)$ is a solution of

(5), this gives us $(q-1)^k$ solutions. Further, for a fixed number s $(1 \le s \le k)$ suppose $x_1 = x_2 = \cdots = x_s = 0$ and $x_i = \alpha_i \in F_q^*$ for $i = s+1, \ldots, k$. Then we have $y_{s+1} = y_{s+2} = \cdots = y_k = 0$ and the last equation of system (5) will have the following form:

$$\left(\sum_{i=s+1}^{k} \alpha_i\right) \cdot (y_1 + y_2 + \dots + y_s) = 0.$$
(7)

If $\sum_{i=s+1}^{\kappa} \alpha_i = 0$, then the Eq. (7) has q^s solutions, otherwise it has q^{s-1} solutions.

The number of different $(\alpha_{s+1}, \alpha_{s+2}, ..., \alpha_k)$, for which $\sum_{i=s+1}^k \alpha_i = 0$, is equal to $(q-1) \left[(q-1)^{k-s-1} + (-1)^{k-s} \right] q^{-1}$ (Lemma 1). And the number of vectors satisfying the condition $\sum_{i=s+1}^k \alpha_i \neq 0$ is equal to $(q-1) \left[(q-1)^{k-s} + (-1)^{k-s+1} \right] q^{-1}$.

Consequently, the total number of solutions of Eq. (7) is equal to

$$\frac{(q-1)\left[(q-1)^{k-s-1}+(-1)^{k-s}\right]}{q} \cdot q^{s} + \frac{(q-1)\left[(q-1)^{k-s}+(-1)^{k-s+1}\right]}{q} \cdot q^{s-1} =$$

= $(2q-1)(q-1)^{k-s}q^{s-2} + (q-1)^{2}(-1)^{k-s}q^{s-2}.$

After combining all possible cases, we find that the number of solutions of system (5) is equal to

$$T_k \equiv (q-1)^k + \sum_{i=1}^k C_k^i \left[(2q-1)(q-1)^{k-i}q^{i-2} + (q-1)^2(-1)^{k-i}q^{i-2} \right] = \left[(2q-1)^{k+1} + 2(q-1)^{k+2} + (-1)^{k+1}(q-1)^2 \right] \cdot q^{-2}.$$

Note that in F_q^2 the number of solutions of the equation xy = 0 is equal to (2q-1). Therefore, the system $\{x_iy_i = 0, i = 1, 2, ..., k$, has $(2q-1)^k$ solutions in F_q^{2k} . Then the number of solutions of system (6) is equal to

$$(2q-1)^k - T_k = \frac{(q-1)^2 \cdot \left[(2q-1)^k - 2(q-1)^k + (-1)^k\right]}{q^2}.$$

Proof of Theorem 1.

Canonical Covering. Let $n \equiv 0 \pmod{2}$ or $q \equiv 0 \pmod{2}$. For the vectors $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}), \boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_{n-1}) \in F_q^{n-1}$ the product $\boldsymbol{\alpha} \cdot \boldsymbol{\beta}$ is defined by the equality $\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = (\alpha_1 \beta_1, \alpha_2 \beta_2, \dots, \alpha_{n-1} \beta_{n-1})$. It is easy to verify that for a fixed vector $\boldsymbol{\gamma} \in F_q^{n-1}$ the number of ordered pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ such that $\boldsymbol{\alpha}, \boldsymbol{\beta} \in F_q^{n-1}$ and $\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = \boldsymbol{\gamma}$ is equal to $(2q-1)^{z(\boldsymbol{\gamma})}(q-1)^{n-1-z(\boldsymbol{\gamma})}$. Hence, if $\boldsymbol{\alpha}, \boldsymbol{\beta} \in F_q^{n-1}$ satisfy the equatin $\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = \boldsymbol{\gamma}$ and $\left(\sum_{i=1}^{n-1} (-1)^{i-1} \alpha_i\right) \left(\sum_{i=1}^{n-1} (-1)^{i-1} \beta_i\right) = \boldsymbol{\omega}$, where $\boldsymbol{\gamma} \in F_q^{n-1}$ and $\boldsymbol{\omega} \in F_q$, then we say that the vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generates a vector $(\boldsymbol{\gamma}, \boldsymbol{\omega}) \in F_q^n$, and this relation will be written by $(\boldsymbol{\alpha}, \boldsymbol{\beta}) \to (\boldsymbol{\gamma}, \boldsymbol{\omega})$.

Now, for Eq. (3) we construct a system of cosets covering the set M_s . Cosets are defined using systems of linear equations over the field F_q . The set M_s , where $0 \le s \le n-1$, is covered by the sets of the solutions of the following systems of linear equations:

$$\begin{cases} x_{3i-2} + x_{3i+1} = \alpha_i, & i = 1, 2, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, & i = 1, 2, \dots, n-1, \\ \gamma_1 x_3 + \dots + \gamma_{n-1} x_{3(n-1)} + \omega x_{3n} = b, \end{cases}$$
(8)

where the vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generates a vector $(\gamma_1, \gamma_2, \dots, \gamma_{n-1}, \boldsymbol{\omega}) \neq (0, 0, \dots, 0, 0) \in F_a^n$ and $z(\boldsymbol{\alpha}\boldsymbol{\beta}) = z(\boldsymbol{\gamma}) = s$.

If s = n - 1 and b = 0 in Eq. (3), then we add sets of solutions of the following systems to the solution sets of systems (8):

$$\begin{cases} x_{3i-2} + x_{3i+1} = \alpha_i, & i = 1, 2, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, & i = 1, 2, \dots, n-1, \end{cases}$$
(9)

where the vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ generates a vector $(0, 0, \dots, 0, 0) \in F_q^n$.

It is obvious that for different vector pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ the sets of solutions of the above constructed systems of equations lie in M_s , are pairwise disjoint and the union of all these sets coincides with M_s and hence it is a disjoint covering of this set.

The ranks of systems (8) and (9) are equal to 2(n-1) + 1 and 2(n-1) respectively. Therefore, the number of solutions of these systems is equal to q^{n+1} and q^{n+2} respectively. The number of vectors $\boldsymbol{\gamma} \in F_q^{n-1}$ with $z(\boldsymbol{\gamma}) = s$, where $0 \leq s \leq n-1$, is equal to $C_{n-1}^s(q-1)^{n-1-s}$. For a fixed $\boldsymbol{\gamma}$ with $z(\boldsymbol{\gamma}) = s$ there exist exactly $(2q-1)^s(q-1)^{n-1-s}$ vector pairs $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = \boldsymbol{\gamma}$. Therefore,

$$|M_s| = C_{n-1}^s (q-1)^{2(n-1-s)} (2q-1)^s q^{n+1}, \quad \text{if } 0 \leq s < n-1.$$

By Lemma 2 we obtain that exactly

$$(q-1)^2 \cdot \left[(2q-1)^{n-1} - 2(q-1)^{n-1} + (-1)^{n-1} \right] q^{-2}$$

vector pairs ($\boldsymbol{\alpha}, \boldsymbol{\beta}$) generate nonzero vectors $(0, \dots, 0, \boldsymbol{\omega}) \in F_q^n$, and exactly

$$\left[(2q-1)^n + 2(q-1)^{n+1} + (-1)^n (q-1)^2 \right] q^{-2}$$

vector pairs ($\boldsymbol{\alpha}, \boldsymbol{\beta}$) generate a zero vector $(0, 0, \dots, 0, 0) \in F_q^n$. Therefore,

$$\begin{split} |M_{n-1}| &= (q-1)^2 \cdot \left[(2q-1)^{n-1} - 2(q-1)^{n-1} + (-1)^{n-1} \right] q^{-2} q^{n+1}, & \text{if } b \neq 0, \\ |M_{n-1}| &= (q-1)^2 \cdot \left[(2q-1)^{n-1} - 2(q-1)^{n-1} + (-1)^{n-1} \right] q^{-2} q^{n+1} + \\ &+ \left[(2q-1)^n + 2(q-1)^{n+1} + (-1)^n (q-1)^2 \right] q^{-2} q^{n+2}, & \text{if } b = 0. \end{split}$$

We also see that

$$\begin{split} |M| &= \left[\sum_{s=0}^{n-2} C_{n-1}^{s} (q-1)^{2(n-1-s)} (2q-1)^{s}\right] q^{n+1} + \\ &+ (q-1)^{2} \cdot \left[(2q-1)^{n-1} - 2(q-1)^{n-1} + (-1)^{n-1}\right] q^{-2} q^{n+1} = \\ &= \left[q^{2n} - (2q-1)^{n} - 2(q-1)^{n+1} + (-1)^{n-1} (q-1)^{2}\right] q^{n-1}, \quad \text{if } b \neq 0, \\ |M| &= \left[q^{2n} - (2q-1)^{n} - 2(q-1)^{n+1} + (-1)^{n-1} (q-1)^{2}\right] q^{n-1} + \\ &+ \left[(2q-1)^{n} + 2(q-1)^{n+1} + (-1)^{n} (q-1)^{2}\right] q^{-2} q^{n+2} = \\ &= \left[q^{2n} + (q-1)(2q-1)^{n} + 2(q-1)^{n+2} + (-1)^{n} (q-1)^{3}\right] q^{n-1}, \quad \text{if } b = 0. \end{split}$$

Now we construct the enlargement of the covering described above. Each $(\boldsymbol{\gamma}, \boldsymbol{\omega}) \in F_q^n$ is associated with a set of linear systems. Fix the vector $(\boldsymbol{\gamma}, \boldsymbol{\omega}) = (\gamma_1, \gamma_2, \dots, \gamma_{n-1}, \boldsymbol{\omega})$, where $z(\boldsymbol{\gamma}) = s$. If s = 0, then the corresponding systems are formed in the same way as a system of the (8) type.

Suppose that $0 < s \le n-1$. Without loss of generality, we can assume that $\gamma_1 = \gamma_2 = \cdots = \gamma_s = 0$ and $\gamma_i \neq 0$, $i = s+1, \ldots, n-1$. For each vector pair $(\boldsymbol{\alpha}, \boldsymbol{\beta}) = (\alpha_{s+1}, \ldots, \alpha_{n-1}, \beta_{s+1}, \ldots, \beta_{n-1})$ such that $\boldsymbol{\alpha} \cdot \boldsymbol{\beta} = \boldsymbol{\gamma} = (\gamma_{s+1}, \ldots, \gamma_{n-1})$, the set of systems of equations is constructed as follows. We write $\boldsymbol{\alpha} \equiv \sum_{i=s+1}^{n-1} (-1)^{i-1} \alpha_i$

and
$$\beta \equiv \sum_{i=s+1}^{n-1} (-1)^{i-1} \beta_i$$
.

If $\omega \neq 0$, then for each vector $(\mu_1, \ldots, \mu_s) \in F_2^s$, where $(\mu_1, \ldots, \mu_s) \neq (0, \ldots, 0)$ and $(\mu_1, \ldots, \mu_s) \neq (1, \ldots, 1)$, and an arbitrary non-zero element $\sigma \in F_q$, we construct the following system of equations:

$$\begin{cases} x_{3i-2} + x_{3i+1} = 0 \iff \mu_i = 0, \\ x_{3i-1} + x_{3i+2} = 0 \iff \mu_i = 1, \\ x_{3i-2} + x_{3i+1} = \alpha_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ \sum_{i=1}^{s} (-1)^{i-1} \mu_i (x_{3i-2} + x_{3i+1}) + \alpha = \sigma, \\ \sum_{i=1}^{s} (-1)^{i-1} (\mu_i \oplus 1) (x_{3i-1} + x_{3i+2}) + \beta = \sigma^{-1} \omega, \\ \gamma_1 x_3 + \dots + \gamma_{n-1} x_{3(n-1)} + \omega x_{3n} = b, \end{cases}$$

where the symbol \oplus denotes the addition of modulo 2, and the notation $x_{3i-2} + x_{3i+1} = 0$ is equivalent to $\mu_i = 0$ that means the equation $x_{3i-2} + x_{3i+1} = 0$ is included in the system if and only if $\mu_i = 0$.

When $(\mu_1, \ldots, \mu_s) = (0, \ldots, 0)$ we form the system

$$\begin{aligned} x_{3i-2} + x_{3i+1} &= 0, \quad i = 1, 2, \dots, s, \\ x_{3i-2} + x_{3i+1} &= \alpha_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} &= \beta_i, \quad i = s+1, \dots, n-1, \\ \sum_{i=1}^{s} (-1)^{i-1} (x_{3i-1} + x_{3i+2}) + \beta &= \alpha^{-1} \omega, \\ \gamma_1 x_3 + \dots + \gamma_{n-1} x_{3(n-1)} + \omega x_{3n} &= b, \end{aligned}$$

if and only if $\alpha \neq 0$ and when $(\mu_1, \dots, \mu_s) = (1, \dots, 1)$, then the system

$$\begin{cases} x_{3i-1} + x_{3i+2} = 0, & i = 1, 2, \dots, s, \\ x_{3i-2} + x_{3i+1} = \alpha_i, & i = s+1, \dots, n-1 \\ x_{3i-1} + x_{3i+2} = \beta_i, & i = s+1, \dots, n-1, \\ \sum_{i=1}^{s} (-1)^{i-1} (x_{3i-2} + x_{3i+1}) + \alpha = \beta^{-1} \omega, \\ \gamma_1 x_3 + \dots + \gamma_{n-1} x_{3(n-1)} + \omega x_{3n} = b \end{cases}$$

is constructed if and only if $\beta \neq 0$.

Next, consider the construction of new systems for $\omega = 0$. In this case, also for each binary vector (μ_1, \ldots, μ_s) , where $(\mu_1, \ldots, \mu_s) \neq (0, \ldots, 0)$ and $(\mu_1, \ldots, \mu_s) \neq (1, \ldots, 1)$, we construct a system

$$\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
x_{3i-2} + x_{3i+1} = 0 \iff \mu_i = 0, \\
x_{3i-1} + x_{3i+2} = 0 \iff \mu_i = 1, \\
x_{3i-2} + x_{3i+1} = \alpha_i, \quad i = s+1, \dots, n-1 \\
x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1 \\
\end{array} \\
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\end{array}$$
\\
\begin{array}{l}
\end{array}\\\\
\begin{array}{l}
\end{array}\\\\
\end{array}\\
\begin{array}{l}
\end{array}\\\\
\end{array}
\left)
\begin{array}{l}
\end{array}\\\\
\end{array}
\left)
\begin{array}{l}
\end{array}\\\\
\end{array}
\left)
\begin{array}{l}
\end{array}\\\\\\
\end{array}
\left)
\end{array}
\left)
\begin{array}{l}
\end{array}\\\\\\
\end{array}
\left)
\end{array}
\left)
\begin{array}{l}
\end{array}\\\\
\end{array}
\left)
\end{array}
\left)
\begin{array}{l}
\end{array}\\\\\\
\end{array}
\left)
\begin{array}{l}
\end{array}
\left)
\begin{array}{l}
\end{array}\\\\
\end{array}
\left)
\end{array}
\left)
\begin{array}{l}
\end{array}
\left)
\end{array}
\left)
\begin{array}{l}
\end{array}
\left)
\begin{array}{l}
\end{array}
\left)
\end{array}
\left)
\left)
\bigg)
\left)
\left)
\bigg)
\left)
\bigg)
\left)
\bigg)
\left)
\bigg)
\left)
\left)
\bigg)
\left(1\right)
\left)
\bigg)
\left)
\bigg)
\left(1\right)
\left)
\bigg)
\left)
\bigg)
\left(1\right)
\left(1\right)
\left)
\bigg)
\left(1\right)
\left(1\right)
\left)
\bigg)
\left(1\right)
\left(1\right)
\left)
\left(1\right)
\left(1\right)
\left)
\left(1\right)
\left(

and the system

and the system
$$\begin{cases} x_{3i-2} + x_{3i+1} = 0 \iff \mu_i = 0, \\ x_{3i-1} + x_{3i+2} = 0 \iff \mu_i = 1, \\ x_{3i-2} + x_{3i+1} = \alpha_i, \quad i = s+1, \dots, n-1, \\ \sum_{i=1}^{s} (-1)^{i-1} (\mu_i \oplus 1) (x_{3i-1} + x_{3i+2}) + \beta = 0, \\ \eta_{13} + \dots + \eta_{n-1} x_{3(n-1)} + \omega x_{3n} = b. \end{cases}$$
When $(\mu_1, \dots, \mu_s) = (0, \dots, 0)$, we compose the system
$$\begin{cases} x_{3i-2} + x_{3i+1} = 0, \quad i = 1, 2, \dots, s, \\ x_{3i-2} + x_{3i+1} = 0, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ y_{1x} + \dots + y_{n-1} x_{3(n-1)} + \omega x_{3n} = b. \end{cases}$$
if $\alpha = 0$, and in the case $\alpha \neq 0$ we compile the system
$$\begin{cases} x_{3i-2} + x_{3i+1} = 0, \quad i = 1, 2, \dots, s, \\ x_{3i-2} + x_{3i+1} = 0, \quad i = 1, 2, \dots, s, \\ x_{3i-2} + x_{3i+1} = 0, \quad i = 1, 2, \dots, s, \\ x_{3i-2} + x_{3i+1} = 0, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ \sum_{i=1}^{s} (-1)^{i-1} (x_{3i-1} + x_{3i+2}) + \beta = 0, \\ \eta_{13} + \dots + \eta_{n-1} x_{3(n-1)} + \omega x_{3n} = b. \end{cases}$$
For $(\mu_1, \dots, \mu_s) = (1, \dots, 1)$, we add a system
$$\begin{cases} x_{3i-1} + x_{3i+2} = 0, \quad i = 1, 2, \dots, s, \\ x_{3i-2} + x_{3i+1} = \alpha_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ x_{3i-1} + x_{3i+2} = \beta_i, \quad i = s+1, \dots, n-1, \\ \sum_{i=1}^{s} (-1)^{i-1} (x_{3i-2} + x_{3i+1}) + \alpha = 0, \\ \eta_{13} + \dots + \eta_{n-1} x_{3(n-1)} + \omega x_{3n} = b. \end{cases}$$
The covering of the set M_s constructed above is called *canonical*. Now let us estimate the complexity of the canonical covering. The number of different vectors $(\alpha, \beta) = (\alpha_{s+1}, \dots, \alpha_{n-1}, \beta_{s+1}, \dots, \beta_{n-1}) \in F_q^{2(n-1-s)}, \text{ where } \alpha_i, \beta_i \in F_q \setminus \{0\}$ for all $i = s+1, \dots, n-1$, for which (according to Lemma 1)

a)
$$\alpha \equiv \sum_{i=s+1}^{n} (-1)^{i-1} \alpha_i = 0$$
 and $\beta \equiv \sum_{i=s+1}^{n} (-1)^{i-1} \beta_i = 0$, is equal to
 $(q-1)^2 \left[(q-1)^{n-s-2} + (-1)^{n-s-1} \right]^2 q^{-2};$
b) $\alpha = 0$ and $\beta \neq 0$, is equal to
 $(q-1)^2 \left[(q-1)^{n-s-2} + (-1)^{n-s-1} \right] \left[(q-1)^{n-s-1} + (-1)^{n-s} \right] q^{-2};$

where

c)
$$\alpha \neq 0$$
 and $\beta = 0$, is equal to
 $(q-1)^2 [(q-1)^{n-s-1} + (-1)^{n-s}] [(q-1)^{n-s-2} + (-1)^{n-s-1}] q^{-2};$
d) $\alpha \neq 0$ and $\beta \neq 0$, is equal to
 $(q-1)^2 [(q-1)^{n-s-1} + (-1)^{n-s}]^2 q^{-2}.$
Then, for a fixed $0 \neq \omega \in F_q$ and $(\boldsymbol{\alpha}, \boldsymbol{\beta}) = (\alpha_{s+1}, \dots, \alpha_{n-1}, \beta_{s+1}, \dots, \beta_{n-1}) \in F_q^{2(n-1-s)}$ the number of new systems, when
a) $\alpha = 0$ and $\beta = 0$, is equal to $(q-1)(2^s-2);$
b) $\alpha = 0$ and $\beta \neq 0$, is equal to $(q-1)(2^s-2) + 1;$
c) $\alpha \neq 0$ and $\beta = 0$, is equal to $(q-1)(2^s-2) + 1;$
d) $\alpha \neq 0$ and $\beta \neq 0$, is equal to $(q-1)(2^s-2) + 1;$
d) $\alpha \neq 0$ and $\beta \neq 0$, is equal to $(q-1)(2^s-2) + 2;$
and for $\omega = 0$ the number of new systems is equal to $2(2^s-2) + 2$ (for all α and β).
Denote by D_s the length of the canonical covering. It is clear that
 $D_0 = (q-1)^{2(n-1)}$. If $0 < s < n-1$, then

$$\begin{split} D_{s} &= C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-2} + (-1)^{n-s-1} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(2^{s}-2) + 2 \right] + \\ &+ 2C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-2} + (-1)^{n-s-1} \right] \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]}{q^{2}} \times \\ &\times \left[(q-1)^{2} (2^{s}-2) + (q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} (2^{s}-2) + 2(q-1) + 2(2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2}}{q^{2}} \left[(q-1)^{2} \left[(q-1)^{2} (2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{n-s-1} + (-1)^{n-s} \right]^{2} \left[(q-1)^{2} (2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{2} (2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{2} (2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{2} (2^{s}-2) + 2 \right] + \\ &+ C_{n-1}^{s} \frac{(q-1)^{2} \left[(q-1)^{2} (2^{s}-2) + 2 \right] + \\ &+ C_{n-$$

Simplifying the last expression, we get

$$D_{s} = C_{n-1}^{s} (2^{s} - 2)(q-1)^{2(n-s)}q^{-1} + C_{n-1}^{s} (2^{s} - 1)(q-1)^{2(n-s)-2} + 2C_{n-1}^{s} (-1)^{n-s} (q-1)^{n-s-1}q^{-1} = C_{n-1}^{s} (2^{s} - 2)(q-1)^{2(n-s)}q^{-1} + o(q^{2(n-s)-1}).$$

Finally, $D_{s} = C_{n-1}^{s} (2^{s} - 2)(q-1)^{2(n-s)}q^{-1} + o(q^{2(n-s)-1})$ when $0 < s < n-1$, and if $s = n - 1$, then

and if s = n - 1, then

$$D_{n-1} = \begin{cases} (q-1)^2(2^s-2), & \text{if } b \neq 0, \\ (q^2-2q+3)(2^s-2)+2, & \text{if } b = 0. \end{cases}$$

Finally we have

$$D_{s} = \begin{cases} (q-1)^{2(n-1)}, & \text{if } s = 0, \\ C_{n-1}^{s}(2^{s}-2)(q-1)^{2(n-s)}q^{-1} + o\left(q^{2(n-s)-1}\right), & \text{if } 0 < s < n-1, \\ (q-1)^{2}(2^{s}-2), & \text{if } s = n-1 \text{ and } b \neq 0, \\ (q^{2}-2q+3)(2^{s}-2)+2, & \text{if } s = n-1 \text{ and } b = 0. \end{cases}$$

Obviously, the quantity D_s is the upper bound for $E_q(n,s)$. The number of cosets contained entirely in one of the sets M_s , s = 0, 1, ..., n-1, is equal to

$$(q-1)^{2(n-1)} + \sum_{s=1}^{n-1} D_s = (q-1)^{2(n-1)} + o\left(q^{2(n-1)}\right),$$

which is an upper bound for $E_q(n)$.

Theorem 2 is completely proved.

Received 23.10.2018

REFERENCES

- 1. Lidl R., Niederreiter H. Finite Fields. Encyclopedia of Mathematics and Its Applications. V. 20: Section Algebra, 1983.
- 2. Alexanyan A.A. Realization of Boolean Functions by Disjunctions of Products of Linear Forms. // Soviet Math. Dokl., 1989, v. 39, № 1, p. 131–135 (in Russian).
- 3. Alexanyan A.A. Disjunctive Normal Forms over Linear Functions. Theory and Applications. Yer.: YSU Press, 1990 (in Russian).
- 4. **Gabrielyan V.** On Metric Characteristics Associated with Coverings of Subsets of Finite Fields by Cosets of Linear Subspaces. Preprint 04-0603. Yer.: Institute for Informatics and Automation Problems NAS of Armenia, 2004 (in Russian).
- Nurijanyan H.K. On the Length of the Shortest Linearized Covering for "Almost All" Subsets in Finite Field. // Reports of NAS RA, 2010, v. 110, № 1, p. 30–34.
- Alexanian A., Gabrielyan V. Coverings of Simmetric Subsets in Finite Fields with Cosets of Linear Subspaces. // Algebra, Geometry and Their Applications, YSU, 2004, v. 3–4, p. 110–124.
- 7. Alexanyan A.A., Serobyan R.K. Coverings Connected with Quadratic Equations over a Finite Field. // Dokl. Acad. Nauk Armenii, 1992, v. 93, № 1, p. 6–10 (in Russian).
- Aleksanyan A., Papikian M. On Coset Coverings of Solutions of Homogeneous Cubic Equations over Finite Fields. // The Electronic Journal of Combinatorics, 2001, v. 8, № 22, p. 1–9.
- 9. **Gabrielyan V.** On the Complexity of Covering a System of Cosets of a Single Equation over a Finite Field. Preprint 04-0602. Yer.: Institute for Informatics and Automation Problems NAS of Armenia, 2004 (in Russian).
- 10. Gabrielyan V.P. Linearized Coverings of One Type Equations of Higher Degree over Finite Fields. // Reports of NAS RA, 2006, v. 106, № 2, p. 101–107 (in Russian).
- 11. **Gabrielyan V.P.** Cubical Diagonal Equation over Finite Fields of Characteristic 2. // Reports of NAS RA, 2010, v. 110, № 3, p. 220–227 (in Russian).
- 12. Alexanian A.A., Minasyan A.V. An Upper Bound for the Complexity of Coset Covering of Subsets in a Finite Field. // Reports of NAS RA, 2017, v. 117, № 4, p. 287–291.
- Minasyan A.V. On the Minimal Coset Covering of the Set of Singular and of the Set of Nonsingular Matrices. // Proceedings of the YSU. Physical and Mathematical Sciences, 2018, v. 52, № 1, p. 8–11.
- 14. **Minasyan A.V.** On the Minimal Coset Covering for a Special Subset in Direct Product of Two Finite Fields. // Proceedings of the YSU. Physical and Mathematical Sciences, 2017, v. 51, № 3, p. 236–240.
- 15. Gabrielyan V.P. Linearized Coverings for Sets of Special Solutions of One Cubic Equation over a Finite Field. // Reports of NAS RA, 2018, v. 118, № 2, p. 115–118.

190