ON THE POSSIBILITY OF GROUP-THEORETIC DESCRIPTION OF AN EQUIVALENCE RELATION CONNECTED TO THE PROBLEM OF COVERING SUBSETS IN FINITE FIELDS WITH COSETS OF LINEAR SUBSPACES

D. S. SARGSYAN *

Chair of Discrete Mathematics and Theoretical Informatics YSU, Armenia

Let F_{q}^{n} be an n-dimensional vector space over a finite field F_{q}. Let $C\left(F_{q}^{n}\right)$ denote the set of all cosets of linear subspaces in F_{q}^{n}. Cosets $H_{1}, H_{2}, \ldots, H_{s}$ are called exclusive if $H_{i} \nsubseteq H_{j}, 1 \leq i<j \leq s$. A permutation f of $C\left(F_{q}^{n}\right)$ is called a C-permutation, if for any exclusive cosets $H, H_{1}, H_{2}, \ldots, H_{s}$ such that $H \subseteq H_{1} \cup H_{2} \cup \cdots \cup H_{s}$ we have: i cosets $f(H), f\left(H_{1}\right), f\left(H_{2}\right), \ldots, f\left(H_{s}\right)$ are exclusive; ii) cosets $f^{-1}(H), f^{-1}\left(H_{1}\right), f^{-1}\left(H_{2}\right), \ldots, f^{-1}\left(H_{s}\right)$ are exclusive; iii) $f(H) \subseteq f\left(H_{1}\right) \cup f\left(H_{2}\right) \cup \cdots \cup f\left(H_{s}\right)$; vi $) f^{-1}(H) \subseteq f^{-1}\left(H_{1}\right) \cup f^{-1}\left(H_{2}\right) \cup$ $\cdots \cup f^{-1}\left(H_{s}\right)$.

In this paper we show that the set of all C-permutations of $C\left(F_{q}^{n}\right)$ is the General Semiaffine Group of degree n over F_{q}.

MSC2010: 97H60, 14N20.
Keywords: finite field, coset, covering, bijection, linearized disjunctive normal form, general affine group, general semiaffine group.

Introduction. Shannon and Povarov introduced an equivalence relation on the set of Boolean functions in relation to Boolean function synthesis by switching circuits [1,2]. Two Boolean functions of n variables are called equivalent if they can be transformed into each other by an isometric transformation of the vertices of the n-dimensional unit cube E^{n}. Isometric transformations form a group (ShannonPovarov group) generated by permutations of the variables and negations of some of the variables.

It is easy to verify that for equivalent Boolean functions the complexities of synthesis by Disjunctive Normal Forms (DNF) and by switching circuits are equal. Tabulating of Shannon-Povarov classes reduces the problem of optimal synthesis of a given Boolean function in the class of DNF or switching circuits to finding an equivalent representative in the Table.

[^0]Due to high number of equivalence classes Shannon-Povarov tabulating is practically not solvable even for $n=5$. In [3] a new equivalence relation is considered in a hope to make the tabulating problem easier.

Let f be a Boolean function of n arguments and $N_{f} \subseteq E^{n}$ be the subset of points on which f is 1 . A subset of points $N \subseteq E^{n}$ corresponding to a conjunction K is called an interval. An interval $N_{1} \subseteq N_{f}$ is called a maximal interval for f, if there is no interval $N_{2} \subseteq N_{f}$ such that $N_{1} \subset N_{2}$. A DNF $K_{1} \vee K_{2} \vee \cdots \vee K_{s}$ of the function f, which corresponds to a covering of the set N_{f} by all the maximal intervals of f is called the reduced DNF of function f. The set of all maximal intervals of f is denoted by D_{f}. Functions f and g are called equivalent, if there is a bijection $h: D_{f} \rightarrow D_{g}$ such that the condition $N_{1} \subseteq M_{1} \cup M_{2} \cup \cdots \cup M_{s}, N_{1}, M_{i} \in D_{f}, 1 \leq i \leq s$ holds if and only if $h\left(N_{1}\right) \subseteq h\left(M_{1}\right) \cup h\left(M_{2}\right) \cup \cdots \cup h\left(M_{s}\right), h\left(N_{1}\right), h\left(M_{i}\right) \in D_{g}, 1 \leq i \leq s$. A covering of N_{f} by a subset of D_{f} is called an irreducible covering, if it ceases to be a covering upon removal of any of its intervals. A DNF corresponding to an irreducible covering is called a terminal DNF. The length of a DNF is the number of its intervals. The shortest DNF of f is a DNF of f with the least possible length. Clearly for equivalent functions f and g the image of any terminal DNF in f is a terminal DNF in g and vice versa, and the lengths of their shortest DNFs are equal. The group of isometric transformations of E^{n} acts naturally on the set of all intervals of E^{n} and functions that are in the same orbit are equivalent to each other. It is shown in [3], that there is no larger group with this property, i.e. every bijection on the set of all intervals with this property is an isometric transformation.

The problem of finding of the shortest coset covering was introduced in [4] originally for Boolean functions in relation with a natural generalization of the notion of DNF of Boolean functions. Let F_{q} stand for a finite field with q elements [5], and $F_{q}^{n}, n \geq 2$, for an n-dimensional linear space over F_{q} (obviously F_{q}^{n} is isomorphic to $F_{q^{n}}$). If L is a linear subspace in F_{q}^{n}, then the set $\alpha+L \equiv\{\alpha+x \mid x \in L\}, \alpha \in F_{q}^{n}$, is a coset (or translate) of the subspace L and $\operatorname{dim}(\alpha+L)$ coincides with $\operatorname{dim}(L)$. An equivalent definition: a subset $N \subseteq F_{q}^{n}$ is a coset if whenever $x^{1}, x^{2}, \ldots, x^{m}$ are in N, so is any affine combination of them, i.e. so is $\sum_{i=1}^{m} \lambda_{i} x^{i}$ for any $\lambda_{1}, \lambda_{2}, \ldots \lambda_{m}$ in F_{q} such that $\sum_{i=1}^{m} \lambda_{i}=1$. The set of all cosets in F_{q}^{n} is denoted by $C\left(F_{q}^{n}\right)\left(F_{q}^{n} \notin C\left(F_{q}^{n}\right)\right)$. A k-dimensional coset is called a k-coset. It can be readily verified that any k-coset in F_{q}^{n} can be represented as a set of solutions of a certain system of linear equations over F_{q} of rank $n-k$ and vice versa.

Definition 1. A set M of cosets forms a coset covering for a subset N in F_{q}^{n} if and only if $N=\bigcup_{H \in M} H$. The number of cosets in M is the length (or complexity) of the covering. The shortest coset covering is the covering of the minimal possible length.

The subset $N \subseteq F_{q}^{n}$ can be given in different ways: as a list of elements, as a set of solutions of a polynomial equation over F_{q}^{n} etc. Finding the shortest coset covering means finding the minimal number of systems of linear equations over F_{q} such that
N coincides with the union of solutions of the linear systems. Various aspects of this problem were investigated in [6-11]. In this paper we consider the analogue of the problem considered in [3] with a more general condition.

Definition 2. Cosets $H_{1}, H_{2}, \ldots, H_{s}$ are called exclusive, if $H_{i} \nsubseteq H_{j}$, $1 \leq i<j \leq s$.

Definition 3. A permutation f of $C\left(F_{q}^{n}\right)$ is called a C-permutation, if for any exclusive cosets H, H_{1}, \ldots, H_{s} such that $H \subseteq H_{1} \cup H_{2} \cup \cdots \cup H_{s}$, we have
$i)$ cosets $f(H), f\left(H_{1}\right), f\left(H_{2}\right), \ldots, f\left(H_{s}\right)$ are exclusive;
ii) cosets $f^{-1}(H), f^{-1}\left(H_{1}\right), f^{-1}\left(H_{2}\right), \ldots, f^{-1}\left(H_{s}\right)$ are exclusive;
iii) $f(H) \subseteq f\left(H_{1}\right) \cup f\left(H_{2}\right) \cup \cdots \cup f\left(H_{s}\right)$;
iv) $f^{-1}(H) \subseteq f^{-1}\left(H_{1}\right) \cup f^{-1}\left(H_{2}\right) \cup \cdots \cup f^{-1}\left(H_{s}\right)$.

Let f be a C-permutation and $H_{1}, H_{2}, \ldots, H_{s}$ be a list of exclusive cosets in F_{q}^{n}. If $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq s$, then $H_{i_{1}} \cup H_{i_{2}} \cup \cdots \cup H_{i_{k}}=H_{1} \cup H_{2} \cup \cdots \cup H_{s}$ if and only if $f\left(H_{i_{1}}\right) \cup f\left(H_{i_{2}}\right) \cup \cdots \cup f\left(H_{i_{k}}\right)=f\left(H_{1}\right) \cup f\left(H_{2}\right) \cup \cdots \cup f\left(H_{s}\right)$.

Definition 4. A permutation f of F_{q}^{n} is called semiaffine, if there is an automorphism σ of F_{q}, a permutation g of F_{q}^{n} and a vector $b \in F_{q}^{n}$ such that for all x, y in F_{q}^{n} and λ in F_{q} it holds that
i) $g(x+y)=g(x)+g(y)$;
ii) $g(\lambda x)=\sigma(\lambda) g(x)$;
iii) $f(x)=g(x)+b$.

If $q=p^{m}, p$ is prime, then $\sigma^{0}, \sigma^{1}, \ldots, \sigma^{m-1}$, where $\sigma^{k}: x \rightarrow x^{p^{k}}$, are all the automorphisms of F_{q} (Theorem 2.21, [5]). For $q=p$ the only automorphism is the identity.

Definition 5. If the automorphism σ in the previous definition is the identity, then f is said to be affine.

The general semiaffine (affine) group of degree n over F_{q}, denoted by $\Gamma A\left(n, F_{q}\right)$ $\left(\operatorname{Aff}\left(n, F_{q}\right)\right)$, is the group of all semiaffine (affine) permutations of F_{q}^{n}. If q is a prime, then $\Gamma A\left(n, F_{q}\right)=\operatorname{Aff}\left(n, F_{q}\right)$. Two groups act naturally on $C\left(F_{q}^{n}\right)$ and coset dimension remains invariant under this action. Therefore, a semiaffine permutation of F_{q}^{n} can also be considered as a permutation of $C\left(F_{q}^{n}\right)$. Clearly every semiaffine transformation is a C-permutation. In this article we consider the problem whether there is another group that acts on $C\left(F_{q}^{n}\right)$ and satisfies this property. The following theorem gives an answer to that question.

Theorem. A permutation f of $C\left(F_{q}^{n}\right)$ is a C-permutation if and only if f is semiaffine.

Proof of the Theorem. As the semiaffine condition in the theorem is clearly sufficient for a permutation to be a C-permutation, it is only left to prove the necessity.

Lemma 1. Intersection of two cosets in F_{q}^{n} is either empty or is a coset of the intersection of their corresponding linear subspaces.

Proof. Let L_{1} and L_{2} be linear subspaces in F_{q}^{n} and $x, y \in F_{q}^{n}$. Suppose $\left(x+L_{1}\right) \cap\left(y+L_{2}\right)$ is not empty and $z \in\left(x+L_{1}\right) \cap\left(y+L_{2}\right)$. Then $x+L_{1}=z+L_{1}$ and $y+L_{2}=z+L_{2}$. It is easy to see that $z+\left(L_{1} \cap L_{2}\right) \subseteq\left(z+L_{1}\right) \cap\left(z+L_{2}\right)$. Now if $z+l_{1}=z+l_{2}$ for some $l_{1} \in L_{1}, l_{2} \in L_{2}$, then $l_{1}=l_{2} \in L_{1} \cap L_{2}$, and $\left(z+L_{1}\right) \cap$
$\left(z+L_{2}\right) \subseteq z+\left(L_{1} \cap L_{2}\right)$. Thus, $\left(z+L_{1}\right) \cap\left(z+L_{2}\right)=z+\left(L_{1} \cap L_{2}\right)$, which completes the Proof.

By $\operatorname{span}(S)$ we denote the linear span of the set S.
Lemma 2. Let $H_{1} \subseteq F_{q}^{n}$ be a k-coset, $1 \leq k \leq n-1$. Then:
i) there exists a 1-coset $H_{2} \subseteq F_{q}^{n}$ such that $\operatorname{dim}\left(H_{1} \cap H_{2}\right)=0$;
ii) there exists a 1-coset $H_{3} \subseteq F_{q}^{n}, H_{3} \neq H_{2}$ such that $H_{3} \cap H_{1}=$ $=H_{3} \cap H_{2}=H_{1} \cap H_{2}$.
Proof.
i) Let L_{1} be the linear subspace of H_{1} and $H_{1}=x+L_{1}$ for some $x \in F_{q}^{n}$. Let $a_{1}, a_{2}, \ldots, a_{k}$ be the basis of L_{1}. Then the vectors $a_{1}, a_{2}, \ldots, a_{k}, b$, where $b \in F_{q}^{n} \backslash L_{1}$ are linearly independent. Set $L_{2}=\operatorname{span}(\{b\})$. Suppose $c \in L_{1} \cap L_{2}$, i.e. $c=\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{k} a_{k}=\beta b$ for some $\alpha_{i}, \beta \in F_{q}, 1 \leq i \leq k$. Then $0=\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{k} a_{k}-\beta b$, which implies $\alpha_{i}=\beta=0,1 \leq i \leq k$, and $c=0$. Hence $L_{1} \cap L_{2}=\{0\}$. Taking $H_{2}=x+L_{2}$, implies $\operatorname{dim}\left(H_{1} \cap H_{2}\right)=0$ as claimed.
ii) Let $c \in F_{q}^{n} \backslash\left(L_{1} \cup L_{2}\right)$ and $H_{3}=x+\operatorname{span}(\{c\})$.

Clearly, the second assertion holds.
Lemma 3. Let f be a C-permutation. Then:
i) f takes k-cosets to k-cosets, $0 \leq k \leq n-1$;
ii) if $H_{1}=\left\{h_{1}, h_{2}, \ldots, h_{s}\right\}$ is a k-coset, $0 \leq k \leq n-1$, then so is
$H_{2}=\left\{f\left(h_{1}\right), f\left(h_{2}\right), \ldots, f\left(h_{s}\right)\right\}$ and $f\left(H_{1}\right)=H_{2}$.

Proof.

i) Suppose to the contrary there exist cosets H_{1}, H_{2} such that $f\left(H_{1}\right)=H_{2}$ and without loss of generality we may assume that $k_{1} \equiv \operatorname{dim}\left(H_{1}\right)>\operatorname{dim}\left(H_{2}\right) \equiv k_{2}$. From Lemma 2 it follows that there is a 1-coset M_{1} such that $\operatorname{dim}\left(H_{1} \cap M_{1}\right)=0$. Let L be the corresponding linear subspace of M_{1}. Suppose $H_{1}=\left\{h_{1}, h_{2}, \ldots h_{s}\right\}, s=q^{k_{1}}$, and $M_{1}=h_{1}+L$. Set $M_{i}=h_{i}+L, 2 \leq i \leq s$. From Lemma 1 it follows that $\operatorname{dim}\left(H_{1} \cap M_{i}\right)=0,2 \leq i \leq s$. Then cosets $H_{1}, M_{1}, M_{2}, \ldots, M_{s}$ are exclusive and $H_{1} \subseteq M_{1} \cup M_{2} \cup \cdots \cup M_{s}$. Hence, $H_{2} \subseteq f\left(M_{1}\right) \cup f\left(M_{2}\right) \cup \cdots \cup f\left(M_{s}\right)$. The exclusivity of $H_{2}, f\left(M_{1}\right), f\left(M_{2}\right), \ldots, f\left(M_{s}\right)$ implies $k_{2} \neq 0$. If $H_{2} \subseteq\left(f\left(M_{1}\right) \cup f\left(M_{2}\right) \cup \cdots \cup\right.$ $\left.f\left(M_{s}\right)\right) \backslash f\left(M_{i}\right)$, for some $1 \leq i \leq s$, then $H_{1} \subseteq\left(M_{1} \cup M_{2} \cup \cdots \cup M_{s}\right) \backslash M_{i}$, which contradicts $M_{i} \cap M_{j}=\emptyset$. Thus, there exist $f_{i} \in f\left(M_{i}\right) \cap H_{2}, 1 \leq i \leq s$, and $f_{i} \notin f\left(M_{j}\right), i \neq j$. Now $\left\{f_{1}, f_{2}, \ldots, f_{s},\right\} \subseteq H_{2}$ and $\left|H_{2}\right| \geq s$, which contradicts $\operatorname{dim}\left(H_{1}\right)>\operatorname{dim}\left(H_{2}\right)$.
ii) Again assume to the contrary $x=f^{-1}(h) \notin H_{1}$ for some $h \in H_{2}$. If $f^{-1}(h) \notin M_{i}, 1 \leq i \leq s$, then $f^{-1}(h), H_{1}, M_{1}, M_{2}, \ldots, M_{s}$ are exclusive, $H_{1} \subseteq f^{-1}(h) \cup M_{1} \cup M_{2} \cup \cdots \cup M_{s}$, but $h, H_{2}, f\left(M_{1}\right), f\left(M_{2}\right), \ldots, f\left(M_{s}\right)$ is not exclusive and we have a contradiction. If $f^{-1}(h) \in M_{i}$ for some $1 \leq i \leq s$, then by Lemma 2 we can replace M_{i} with a 1 -coset \tilde{M}_{i}, so that cosets $H_{1},\left\{M_{1}, M_{2} \ldots, M_{s}\right\} \backslash M_{i}, \tilde{M}_{i}$ are exclusive, $H_{1} \subseteq \bigcup_{j \neq i} M_{j} \cup \tilde{M}_{i}$, and $f^{-1}(h) \notin \bigcup_{j \neq i} M_{j} \cup \tilde{M}_{i}$. The case is now reduced to the case that we just covered.

It is well known, that if a permutation f of F_{q}^{n}, where $q \neq 2$, maps 1-cosets to 1 -cosets, then f is semiaffine. In the case of $q=2$ a 1-coset in F_{2}^{n} is just a two element subset, hence every permutation of F_{2}^{n} takes all 1-cosets to 1 -cosets. However, a permutation of F_{2}^{n}, which takes every 2-coset to a 2-coset, must be affine [12]. Now the necessity of the Theorem is immediate from Lemma 3.

Received 21.01.2019
Reviewed 29.01.2019
Accepted 02.04.2019

REFERENCES

1. Shannon C. The Synthesis of Two-Terminal Switching Circuits. // BSTJ., 1949, v. 28, No. 1, p. 59-98.
2. Povarov G. Matematicheskaya Theoriya Sinteza Kontaktnyh (1, k)-Polyusnikov. // DAN SSSR, 1955, v. 100, No. 5, p. 909-912 (in Russian).
3. Alexanian A. On the Limits of Applicability of Group-Theoretic Description of Equivalence Relations Preserving Sets of Terminal DNF of Boolean Functions. // Kibernetika, 1983, No. 5 (in Russian).
4. Alexanian A. Disjunctive Normal Forms over Linear Functions (Theory and Applications). Yer.: YSU Press, 1990 (in Russian).
5. Lidl R., Niederreiter H. Finite Fields (2nd ed.). Cambridge University Press, 1997.
6. Alexanian A. Realization of Boolean Functions by Disjunctions of Products of Linear Forms. // Soviet Math. Dokl., 1989, v. 39, No. 1, p. 131-135.
7. Alexanian A., Serobian R. Covers Concerned with the Quadratic over Finite Field Equations. // Dokl. AN Arm. SSR, 1992, v. 93, No. 1, p. 6-10 (in Russian).
8. Alexanian A., Gabrielyan V. Algebra, Geometry and Their Applications. Seminar Proceedings. Yer.: YSU Press, 2004, v. 3-4, p. 97-111.
9. Nurijanyan H.K. An Upper Bound for the Complexity of Linearized Coverings in a Finite Field. // Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 2010, v. 2, p. 41-48.
10. Gabrielyan V. On Metric Characterization Connected with Covering Subset of Finite Fields by Cosets of the Linear Subspaces. Institut Problem Informatiki i Avtomatizacii. Preprint 04-0603. Yer., 2004 (in Russian).
11. Gabrielyan V. On Complexity of Coset Covering of an Equation over Finite Field. Institut Problem Informatiki i Avtomatizacii. Preprint 04-0602. Yer., 2004 (in Russian).
12. Clark W. E., Hou X., Mihailovs A. The Affinity of a Permutation of a Finite Vvector Space. // Finite Fields and Their Applications, 2007, v. 13, No. 1, p. 80-112.

[^0]: * E-mail: davit.sargsyan.1993@gmail.com

