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Let Fn
q be an n-dimensional vector space over a finite field Fq. Let C(Fn

q )
denote the set of all cosets of linear subspaces in Fn

q . Cosets H1,H2, . . . ,Hs
are called exclusive if Hi 6⊆ H j, 1 ≤ i < j ≤ s. A permutation f of C(Fn

q )
is called a C-permutation, if for any exclusive cosets H,H1,H2, . . . ,Hs such
that H ⊆ H1 ∪H2 ∪ ·· · ∪Hs we have: i) cosets f (H), f (H1), f (H2), . . . , f (Hs)
are exclusive; ii) cosets f−1(H), f−1(H1), f−1(H2), . . . , f−1(Hs) are exclusive;
iii) f (H) ⊆ f (H1)∪ f (H2)∪ ·· · ∪ f (Hs); vi) f−1(H) ⊆ f−1(H1)∪ f−1(H2)∪
·· ·∪ f−1(Hs).

In this paper we show that the set of all C-permutations of C(Fn
q ) is the

General Semiaffine Group of degree n over Fq.
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Introduction. Shannon and Povarov introduced an equivalence relation on
the set of Boolean functions in relation to Boolean function synthesis by switching
circuits [1, 2]. Two Boolean functions of n variables are called equivalent if they
can be transformed into each other by an isometric transformation of the vertices of
the n-dimensional unit cube En. Isometric transformations form a group (Shannon–
Povarov group) generated by permutations of the variables and negations of some of
the variables.

It is easy to verify that for equivalent Boolean functions the complexities of
synthesis by Disjunctive Normal Forms (DNF) and by switching circuits are equal.
Tabulating of Shannon–Povarov classes reduces the problem of optimal synthesis
of a given Boolean function in the class of DNF or switching circuits to finding an
equivalent representative in the Table.
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Due to high number of equivalence classes Shannon–Povarov tabulating is
practically not solvable even for n= 5. In [3] a new equivalence relation is considered
in a hope to make the tabulating problem easier.

Let f be a Boolean function of n arguments and N f ⊆ En be the subset of
points on which f is 1. A subset of points N ⊆ En corresponding to a conjunction K
is called an interval. An interval N1 ⊆ N f is called a maximal interval for f , if there
is no interval N2 ⊆ N f such that N1 ⊂ N2. A DNF K1∨K2∨ ·· · ∨Ks of the function
f , which corresponds to a covering of the set N f by all the maximal intervals of f is
called the reduced DNF of function f . The set of all maximal intervals of f is denoted
by D f . Functions f and g are called equivalent, if there is a bijection h : D f → Dg

such that the condition N1 ⊆M1∪M2∪ ·· · ∪Ms,N1,Mi ∈ D f ,1 ≤ i ≤ s holds if and
only if h(N1)⊆ h(M1)∪h(M2)∪·· ·∪h(Ms),h(N1),h(Mi)∈Dg,1≤ i≤ s. A covering
of N f by a subset of D f is called an irreducible covering, if it ceases to be a covering
upon removal of any of its intervals. A DNF corresponding to an irreducible covering
is called a terminal DNF. The length of a DNF is the number of its intervals. The
shortest DNF of f is a DNF of f with the least possible length. Clearly for equivalent
functions f and g the image of any terminal DNF in f is a terminal DNF in g and
vice versa, and the lengths of their shortest DNFs are equal. The group of isometric
transformations of En acts naturally on the set of all intervals of En and functions that
are in the same orbit are equivalent to each other. It is shown in [3], that there is no
larger group with this property, i.e. every bijection on the set of all intervals with this
property is an isometric transformation.

The problem of finding of the shortest coset covering was introduced in [4]
originally for Boolean functions in relation with a natural generalization of the no-
tion of DNF of Boolean functions. Let Fq stand for a finite field with q elements [5],
and Fn

q , n≥ 2, for an n-dimensional linear space over Fq (obviously Fn
q is isomorphic

to Fqn). If L is a linear subspace in Fn
q , then the set α +L≡ {α + x | x ∈ L},α ∈ Fn

q ,
is a coset (or translate) of the subspace L and dim(α + L) coincides with dim(L).
An equivalent definition: a subset N ⊆ Fn

q is a coset if whenever x1,x2, . . . ,xm

are in N, so is any affine combination of them, i.e. so is
m

∑
i=1

λixi for any λ1,λ2, . . .λm in

Fq such that
m

∑
i=1

λi = 1. The set of all cosets in Fn
q is denoted by C(Fn

q )(F
n

q 6∈C(Fn
q )).

A k-dimensional coset is called a k-coset. It can be readily verified that any k-coset
in Fn

q can be represented as a set of solutions of a certain system of linear equations
over Fq of rank n− k and vice versa.

D e f i n i t i o n 1. A set M of cosets forms a coset covering for a subset
N in Fn

q if and only if N =
⋃

H∈M H. The number of cosets in M is the length
(or complexity) of the covering. The shortest coset covering is the covering of the
minimal possible length.

The subset N ⊆ Fn
q can be given in different ways: as a list of elements, as a set

of solutions of a polynomial equation over Fn
q etc. Finding the shortest coset covering

means finding the minimal number of systems of linear equations over Fq such that
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N coincides with the union of solutions of the linear systems. Various aspects of this
problem were investigated in [6–11]. In this paper we consider the analogue of the
problem considered in [3] with a more general condition.

D e f i n i t i o n 2. Cosets H1,H2, . . . ,Hs are called exclusive, if Hi 6⊆ H j,
1≤ i < j ≤ s.

D e f i n i t i o n 3. A permutation f of C(Fn
q ) is called a C-permutation, if for

any exclusive cosets H,H1, . . . ,Hs such that H ⊆ H1∪H2∪·· ·∪Hs, we have
i) cosets f (H), f (H1), f (H2), . . . , f (Hs) are exclusive;
ii) cosets f−1(H), f−1(H1), f−1(H2), . . . , f−1(Hs) are exclusive;
iii) f (H)⊆ f (H1)∪ f (H2)∪·· ·∪ f (Hs);
iv) f−1(H)⊆ f−1(H1)∪ f−1(H2)∪·· ·∪ f−1(Hs).
Let f be a C-permutation and H1,H2, . . . ,Hs be a list of exclusive cosets in Fn

q .
If 1≤ i1 < i2 < · · ·< ik ≤ s, then Hi1 ∪Hi2 ∪·· ·∪Hik = H1∪H2∪·· ·∪Hs if and only
if f (Hi1)∪ f (Hi2)∪·· ·∪ f (Hik) = f (H1)∪ f (H2)∪·· ·∪ f (Hs).

D e f i n i t i o n 4. A permutation f of Fn
q is called semiaffine, if there is an

automorphism σ of Fq, a permutation g of Fn
q and a vector b ∈ Fn

q such that for all
x,y in Fn

q and λ in Fq it holds that
i) g(x+ y) = g(x)+g(y);
ii) g(λx) = σ(λ )g(x);
iii) f (x) = g(x)+b.
If q = pm, p is prime, then σ0,σ1, . . . ,σm−1, where σ k : x→ xpk

, are all the
automorphisms of Fq (Theorem 2.21, [5]). For q = p the only automorphism is the
identity.

D e f i n i t i o n 5. If the automorphism σ in the previous definition is the
identity, then f is said to be affine.

The general semiaffine (affine) group of degree n over Fq, denoted by ΓA(n,Fq)
(A f f (n,Fq)), is the group of all semiaffine (affine) permutations of Fn

q . If q is a
prime, then ΓA(n,Fq) = A f f (n,Fq). Two groups act naturally on C(Fn

q ) and coset
dimension remains invariant under this action. Therefore, a semiaffine permutation
of Fn

q can also be considered as a permutation of C(Fn
q ). Clearly every semiaffine

transformation is a C-permutation. In this article we consider the problem whether
there is another group that acts on C(Fn

q ) and satisfies this property. The following
theorem gives an answer to that question.

T h e o r e m . A permutation f of C(Fn
q ) is a C-permutation if and only if

f is semiaffine.
Proof of the Theorem. As the semiaffine condition in the theorem is clearly

sufficient for a permutation to be a C-permutation, it is only left to prove the necessity.
L e m m a 1. Intersection of two cosets in Fn

q is either empty or is a coset of
the intersection of their corresponding linear subspaces.

P r o o f . Let L1 and L2 be linear subspaces in Fn
q and x,y ∈ Fn

q . Suppose
(x+L1)∩ (y+L2) is not empty and z ∈ (x+L1)∩ (y+L2). Then x+L1 = z+L1
and y + L2 = z + L2. It is easy to see that z + (L1 ∩ L2) ⊆ (z + L1) ∩ (z + L2).
Now if z+ l1 = z+ l2 for some l1 ∈ L1, l2 ∈ L2, then l1 = l2 ∈ L1∩L2, and (z+L1)∩
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(z+L2)⊆ z+(L1∩L2). Thus, (z+L1)∩ (z+L2) = z+(L1∩L2), which completes
the Proof. �

By span(S) we denote the linear span of the set S.
L e m m a 2. Let H1 ⊆ Fn

q be a k-coset, 1≤ k ≤ n−1. Then:

i) there exists a 1-coset H2 ⊆ Fn
q such that dim(H1∩H2) = 0;

ii) there exists a 1-coset H3 ⊆ Fn
q ,H3 6= H2 such that H3∩H1 =

= H3∩H2 = H1∩H2.

P r o o f .

i) Let L1 be the linear subspace of H1 and H1 = x + L1 for some x ∈ Fn
q .

Let a1,a2, . . . ,ak be the basis of L1. Then the vectors a1,a2, . . . ,ak,b, where
b ∈ Fn

q \L1 are linearly independent. Set L2 = span({b}). Suppose c ∈ L1 ∩L2, i.e.
c = α1a1 + α2a2 + · · · + αkak = βb for some αi,β ∈ Fq,1 ≤ i ≤ k. Then
0 = α1a1 +α2a2 + · · ·+αkak−βb, which implies αi = β = 0,1≤ i≤ k, and c = 0.
Hence L1∩L2 = {0}. Taking H2 = x+L2, implies dim(H1∩H2) = 0 as claimed.

ii) Let c ∈ Fn
q \(L1∪L2) and H3 = x+ span({c}).

Clearly, the second assertion holds. �
L e m m a 3. Let f be a C-permutation. Then:

i) f takes k-cosets to k-cosets, 0≤ k ≤ n−1;

ii) if H1 = {h1,h2, . . . ,hs} is a k-coset,0≤ k ≤ n−1, then so is

H2 = { f (h1), f (h2), . . . , f (hs)} and f (H1) = H2.

P r o o f .

i) Suppose to the contrary there exist cosets H1,H2 such that f (H1) = H2 and
without loss of generality we may assume that k1 ≡ dim(H1)> dim(H2)≡ k2. From
Lemma 2 it follows that there is a 1-coset M1 such that dim(H1∩M1)= 0. Let L be the
corresponding linear subspace of M1. Suppose H1 = {h1,h2, . . .hs}, s = qk1 ,
and M1 = h1 + L. Set Mi = hi + L, 2 ≤ i ≤ s. From Lemma 1 it follows that
dim(H1 ∩Mi) = 0, 2 ≤ i ≤ s. Then cosets H1,M1,M2, . . . ,Ms are exclusive and
H1 ⊆ M1 ∪M2 ∪ ·· · ∪Ms. Hence, H2 ⊆ f (M1)∪ f (M2)∪ ·· · ∪ f (Ms). The exclu-
sivity of H2, f (M1), f (M2), . . . , f (Ms) implies k2 6= 0. If H2 ⊆ ( f (M1)∪ f (M2)∪·· ·∪
f (Ms))\ f (Mi), for some 1≤ i≤ s, then H1 ⊆ (M1∪M2∪·· ·∪Ms)\Mi, which contra-
dicts Mi∩M j = /0. Thus, there exist fi ∈ f (Mi)∩H2,1≤ i≤ s, and fi 6∈ f (M j), i 6= j.
Now { f1, f2, . . . , fs,} ⊆ H2 and |H2| ≥ s, which contradicts dim(H1)> dim(H2).

ii) Again assume to the contrary x = f−1(h) 6∈ H1 for some h ∈ H2.
If f−1(h) 6∈ Mi,1 ≤ i ≤ s, then f−1(h),H1,M1,M2, . . . ,Ms are exclusive,
H1 ⊆ f−1(h)∪M1 ∪M2 ∪ ·· · ∪Ms, but h,H2, f (M1), f (M2), . . . , f (Ms) is not exclu-
sive and we have a contradiction. If f−1(h)∈Mi for some 1≤ i≤ s, then by Lemma 2
we can replace Mi with a 1-coset M̃i, so that cosets H1,{M1,M2 . . . ,Ms}\Mi,M̃i

are exclusive,H1 ⊆
⋃

j 6=i M j ∪ M̃i, and f−1(h) 6∈
⋃

j 6=i M j ∪ M̃i. The case is now
reduced to the case that we just covered. �
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It is well known, that if a permutation f of Fn
q , where q 6= 2, maps 1-cosets to

1-cosets, then f is semiaffine. In the case of q= 2 a 1-coset in Fn
2 is just a two element

subset, hence every permutation of Fn
2 takes all 1-cosets to 1-cosets. However, a

permutation of Fn
2 , which takes every 2-coset to a 2-coset, must be affine [12]. Now

the necessity of the Theorem is immediate from Lemma 3.
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