ON A GENERALIZED FORMULA OF TAYLOR-MACLAURIN TYPE ON THE GENERALIZED COMPLETELY MONOTONE FUNCTIONS

B. A. SAHAKYAN *

Chair of General Mathematics YSU, Armenia

In the paper Taylor-Maclaurin type formulas for some classes of functions are obtained. The main result of this study introduces an idea of the generalized classes of $\left\langle\rho_{j}\right\rangle$ completely monotone function. Under the various conditions $\left(\sum_{j=1}^{\infty} \frac{1}{\rho_{j}}<+\infty, \sum_{j=1}^{\infty} \frac{1}{\rho_{j}}=+\infty,\right)$ the terms of their representation are obtained and some related theorems are proved.

MSC2010: 30H05.
Keywords: Riemann-Liouville type operators, $\left\langle\rho_{j}\right\rangle$ completely monotone functions.

Introduction. In the present paper are considered a system of functions

$$
\left\{\frac{(a-x)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)}\right\}_{0}^{\infty}
$$

and a system of operators
$\left\{A_{a, n} f\right\}_{0}^{\infty},\left\{A_{a, n}^{*} f\right\}_{0}^{\infty}, A_{a, n} f(x)=\prod_{j=0}^{n-1} D_{a}^{1 / \rho_{j}} f(x), A_{a, n}^{*} f(x)=D_{a}^{-\alpha_{n}} A_{a, n} f(x), n \geq 1,\left(2^{\circ}\right)$
$A_{a, 0} f \equiv f, x \in[0, a], \lambda_{n}=\sum_{j=1}^{n} \frac{1}{\rho_{j}}, \rho_{j} \geq 1, \rho_{0}=1, \lambda_{0}=0,1-\alpha_{j}=\frac{1}{\rho_{j}}, j=1,2, \ldots ;$
$D_{a}^{-\alpha_{j}} f(x)=\frac{1}{\Gamma\left(\alpha_{j}\right)} \int_{x}^{a}(t-x)^{\alpha_{j}-1} f(t) d t, D_{a}^{1 / \rho_{j}} f(x)=\frac{d}{d x} D_{a}^{-\alpha_{j}} f(x), j=0,1, \ldots$
Note that in the papers $[1-8]$ by author and prof. Dzhrbashyan were obtained various generalized formulas of Taylor-Maclaurin type, using operators of RiemannLiouville type of fraction order and functions of Mittag-Leffler type. In these papers it was introduced the concept of absolutely monotone functions $\langle\rho\rangle,\left\langle\rho_{j}\right\rangle,\left\langle\rho, \lambda_{j}\right\rangle$, $\left\langle\rho_{j}, W_{j}\right\rangle$ and the problems of their representation were studied.

In the present paper we introduce the concept of generalized completely monotone functions $\left\langle\rho_{j}\right\rangle$ and study the problems of their representation. Note that using some other operators prof. Badalyan has introduced the concept of generalized regular monotone functions [9].

[^0]We introduce general classes $\left\langle\rho_{j}\right\rangle$ of completely monotone functions and prove some representation theorems under the conditions:
a) $\sum_{j=1}^{\infty} 1 / \rho_{j}=+\infty, f(x)=\sum_{k=0}^{\infty}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}, x \in[0, a]$;
b) $\sum_{j=1}^{\infty} 1 / \rho_{j}<+\infty, f(x)=\sum_{k=0}^{\infty}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}-\frac{1}{\Gamma\left(1+\lambda_{\infty}\right)} \int_{x}^{a}(t-x)^{\lambda_{\infty}} d \mu(t)$, $x \in(0, a], \lambda_{\infty}=\sum_{j=1}^{\infty} \frac{1}{\rho_{j}}$.

Preliminary Information and Lemmas. Let $f(x)$ be an arbitrary function from $L(0, l) \quad(0<l<+\infty)$. The function

$$
\begin{equation*}
{ }_{0} D^{-\alpha} f(x) \equiv D^{-\alpha} f(x) \equiv \frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t, \quad x \in(0, l) \tag{1}
\end{equation*}
$$

is called the Riemann-Liouville integral of the function $f(x)$ of order $\alpha(0<\alpha<+\infty)$ with a lower limit at the point $x=0$, and the function

$$
\begin{equation*}
D_{l}^{-\alpha} f(x) \equiv \frac{1}{\Gamma(\alpha)} \int_{x}^{l}(t-x)^{\alpha-1} f(t) d t, \quad x \in(0, l) \tag{2}
\end{equation*}
$$

is called the Riemann-Liouville integral of function $f(x)$ of order α with an upper limit at the point $x=l$.

At each Lebesgue point of the function $f(x)$ and consequently almost everywhere on $(0, l)$, we have $\lim _{\alpha \rightarrow+0} D^{-\alpha} f(x)=f(x)$, so we define $D^{0} f(x)=f(x)$, $x \in(0, l)$. Let $\rho \geq 1,1 / \rho=1-\alpha(0 \leq \alpha<1)$. Then the function

$$
\begin{equation*}
{ }_{0} D^{1 / \rho} f(x) \equiv D^{1 / \rho} f(x) \equiv \frac{d}{d x} D^{-\alpha} f(x) \tag{3}
\end{equation*}
$$

is called Riemann-Liouville derivative of order $1 / \rho$ for $f(x)$ with lower limit at $x=0$.
$D_{l}^{1 / \rho} f(x) \equiv \frac{d D_{l}^{-\alpha} f(x)}{d x}$ is called the derivative of the function $f(x)$ with upper limit at $x=l$ (see details in [10], Chap. 9).

The function of Mittag-Leffler type

$$
\begin{equation*}
E_{\rho}(z, \mu)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma\left(\mu+n \rho^{-1}\right)}, \quad \rho>0 \tag{4}
\end{equation*}
$$

is an entire function of order ρ and type 1 for any value of the parameter μ [10].
For any $\mu>0, \alpha>0$ the following formula holds:

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha)} \int_{0}^{z}(z-t)^{\alpha-1} E_{\rho}\left(\lambda t^{1 / \rho}, \mu\right) t^{\mu-1} d t=z^{\mu+\alpha-1} E_{\rho}\left(\lambda z^{1 / \rho}, \mu+\alpha\right) \tag{5}
\end{equation*}
$$

where λ is a complex parameter and the integration is taken over a curve connecting the points 0 with $z([10]$, Eq. (1.16)).

Lemma A. [1]. Let $\varphi(x) \in L(0, l)(0<l<+\infty)$ and let λ be an arbitrary parameter. In the class of functions $y(x) \in L(0, l), D^{1 / \rho} y(x) \in L(0, l)$ the problem of Cauchy type

$$
\begin{equation*}
D^{1 / \rho} y(x)+\lambda y(x)=\varphi(x), x \in(0, l) ;\left.\quad D^{-\alpha} y(x)\right|_{x=0}=0 \tag{6}
\end{equation*}
$$

has a unique solution $Y(x, \lambda)$, which can be expressed in the form

$$
\begin{equation*}
Y(x, \lambda)=\int_{0}^{x} e_{\rho}(x-t, \lambda) \varphi(t) d t, x \in(0, l), e_{\rho}(x, \lambda)=E_{\rho}\left(-\lambda x^{1 / \rho}, 1 / \rho\right) x^{1 / \rho-1} \tag{7}
\end{equation*}
$$

From the Lemma A it particularly follows that in case $\varphi(x) \equiv 0$ we have

$$
D^{1 / \rho} y(x)+\lambda y(x)=0,\left.\quad D^{-\alpha} y(x)\right|_{x=0}=0
$$

and the problem of Caushy type has a unique solution $y(x) \equiv 0$. The following lemma is a version of Lemma A .

Lemma 1. Let $\varphi(x) \in L(0, a), \quad 0<a<+\infty$, and λ be an arbitrary parameter. Then in the class of functions satisfying the conditions $y(x) \in L(0, a)$, and $D_{a}^{1 / \rho} y(x) \in L(0, a)$ the problem of Cauchy type

$$
\begin{equation*}
D_{a}^{1 / \rho} y(x)-\lambda y(x)=\varphi(x), \quad x \in(0, a),\left.D_{a}^{-\alpha} y(x)\right|_{x=a}=0 \tag{8}
\end{equation*}
$$

has a unique solution $Y(x, \lambda)$, which can be expressed in the form

$$
\begin{equation*}
Y(x, \lambda)=-\int_{x}^{a} e_{\rho}(t-x, \lambda) \varphi(t) d t \tag{9}
\end{equation*}
$$

From 9p, for $\lambda=0$ we get $y(x)=-\frac{1}{\Gamma(1 / \rho)} \int_{x}^{a}(t-x)^{1 / \rho-1} \varphi(t) d t$.
Lemma 2. Let $\varphi(x) \in L(0, a), \rho \geq 1,1-\alpha=1 / \rho$. Then in the class of functions $y(x) \in L(0, a), y^{\prime}(x) \in L(0, a), D_{a}^{1 / \rho} y^{\prime}(x) \in L(0, a)$ Cauchy type problem $D_{a}^{1 / \rho} y^{\prime}(x)=\varphi(x), x \in(0, a),\left.y(x)\right|_{x=a}=0,\left.y^{\prime}(x)\right|_{x=a}=0,\left.D_{a}^{-\alpha} y^{\prime}(x)\right|_{x=a}=0$,
has a unique solution

$$
y(x)=\frac{1}{\Gamma(1+1 / \rho)} \int_{x}^{a}(t-x)^{1 / \rho} \varphi(t) d t
$$

2. Formula of Taylor-Maclaurin Type. Let sequences $\left\{\rho_{k}\right\}_{0}^{\infty}, \rho_{0}=1 ;\left\{\alpha_{k}\right\}_{0}^{\infty}$, $\alpha_{0}=0 ;\left\{\lambda_{k}\right\}_{0}^{\infty}, \lambda_{0}=0$ satisfy the conditions

$$
\begin{equation*}
\rho_{k} \geq 1, \quad \alpha_{k}=1-1 / \rho_{k}, \quad \lambda_{k}=\sum_{j=1}^{k} 1 / \rho_{j}, \quad k=1,2, \ldots \tag{12}
\end{equation*}
$$

Consider the sequence of operators on an admissible class of functions $f(x)$. $\left\{A_{a, n} f(x)\right\}_{0}^{\infty}, \quad\left\{A_{a, n}^{*} f(x)\right\}_{0}^{\infty} \quad$ defined by

$$
\begin{align*}
A_{a, n} f(x)= & \prod_{j=0}^{n-1} D_{a}^{1 / \rho_{j}} f(x)\left(A_{a, 0} f \equiv f, A_{a, 1} f \equiv f^{\prime}(x)\right), \quad n \geq 0 \tag{13}\\
& A_{a, n}^{*} f(x)=D_{a}^{-\alpha_{n}} A_{a, n} f(x), \quad A_{a, 0}^{*} f \equiv f
\end{align*}
$$

where $D_{a}^{1 / \rho_{j}} f(x) \equiv \frac{d}{d x} D_{a}^{-\alpha_{j}} f(x), D_{a}^{-\alpha_{j}} f(x)=\frac{1}{\Gamma\left(\alpha_{j}\right)} \int_{x}^{a}(t-x)^{\alpha_{j}-1} f(t) d t, j=0,1, \ldots$
Consider the sequence of functions

$$
\begin{equation*}
\left\{\frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}\right\}_{0}^{\infty}, \quad x \in[0, a] . \tag{14}
\end{equation*}
$$

Note that operators like (13) and a system like (14) were introduced in [2].
Lemma 3. Let $\varphi(x) \in L(0, a)$. Then in class of functions $A_{a, k} y(x) \in L(0, a)$ $\left(A_{a, 0} y(x) \equiv y(x), A_{a, 1} y(x)=y^{\prime}(x)\right)$ the problem of Cauchy type

$$
\begin{equation*}
A_{a, n+1} y^{\prime}(x)=\varphi(x),\left.y(x)\right|_{x=a}=0,\left.\quad D_{a}^{-\alpha_{k}} A_{a, k} y^{\prime}(x)\right|_{x=a}=0 \quad(k=0,1, \ldots, n) \tag{15}
\end{equation*}
$$

has a unique solution $Y(x)$, which can be expressed in the form

$$
\begin{equation*}
Y(x)=\frac{(-1)^{n+1}}{\Gamma\left(1+\lambda_{n}\right)} \int_{x}^{a}(t-x)^{\lambda_{n}} \varphi(t) d t, \quad \lambda_{n}=\sum_{k=1}^{n} \frac{1}{\rho_{k}} . \tag{16}
\end{equation*}
$$

Notice, that for $n=1,2$ Lemma 3 is true according to Lemma 2.

Proof. We carry out an induction argument to prove of the Lemma. Assuming that Lemma 3 is true, we show that the problem of Cauchy type

$$
\begin{gather*}
A_{a, n+2} y^{\prime}(x)=\varphi(x), \quad x \in(0, a),\left.y(x)\right|_{x=a}=0 \tag{17}\\
\left.D_{a}^{-\alpha_{k}} A_{a, k} y(x)\right|_{x=a}=0, \quad k=0,1,2, \ldots, n, n+1
\end{gather*}
$$

has a unique solution

$$
\begin{equation*}
y(x)=\frac{(-1)^{n+2}}{\Gamma\left(1+\lambda_{n+1}\right)} \int_{x}^{a}(t-x)^{\lambda_{n+1}} \varphi(t) d t . \tag{18}
\end{equation*}
$$

Note that $A_{a, n+2} y^{\prime}(x)=D_{a}^{1 / \rho_{n+1}}\left(A_{a, n+1} y^{\prime}(x)\right)=\varphi(x)$.
Denoting $A_{a, n+1} y^{\prime}(x) \equiv Y(x)$ we can write $D_{a}^{1 / \rho_{n+1}} Y(x)=\varphi(x)$. According to Lemma 1 (for $\lambda=0), Y(x)=-\frac{1}{\Gamma\left(1 / \rho_{n+1}\right)} \int_{x}^{a}(t-x)^{1 / \rho_{n+1}-1} \varphi(t) d t$, i.e.

$$
\begin{equation*}
A_{a, n+1} y^{\prime}(x)=-\frac{1}{\Gamma\left(1 / \rho_{n+1}\right)} \int_{x}^{a}(t-x)^{1 / \rho_{n+1}-1} \varphi(t) d t \tag{19}
\end{equation*}
$$

Since Lemma 3 in true, we have

$$
\begin{align*}
y(x)= & \frac{(-1)^{n+1}}{\Gamma\left(1+\lambda_{n}\right)} \int_{x}^{a}(t-x)^{\lambda_{n}} d t\left(-\frac{1}{\Gamma\left(1 / \rho_{n+1}\right)} \int_{t}^{a}(\tau-t)^{1 / \rho_{n+1}-1} \varphi(\tau) d \tau\right) d t= \\
& =\frac{(-1)^{n+2}}{\Gamma\left(1+\lambda_{n}\right) \Gamma\left(1 / \rho_{n+1}\right)} \int_{x}^{a} \varphi(\tau) d \tau \int_{x}^{\tau}(t-x)^{\lambda_{n}}(\tau-t)^{1 / \rho_{n+1}-1} d t \tag{20}
\end{align*}
$$

Obviously,

$$
\begin{gather*}
\int_{x}^{\tau}(t-x)^{\lambda_{n}}(\tau-t)^{1 / \rho_{n+1}-1} d t=(\tau-x)^{\lambda_{n}+1 / \rho_{n+1}} \int_{0}^{1}(1-v)^{\lambda_{n}} v^{1 / \rho_{n+1}-1} d v= \\
=\frac{(\tau-x)^{\lambda_{n+1}} \Gamma\left(1+\lambda_{n}\right) \Gamma\left(1 / \rho_{n+1}\right)}{\Gamma\left(1+\lambda_{n+1}\right)} \tag{21}
\end{gather*}
$$

From 20 and 21 we get $y(x)=\frac{(-1)^{n+2}}{\Gamma\left(1+\lambda_{n+1}\right)} \int_{x}^{a}(t-x)^{\lambda_{n+1}} \varphi(t) d t$, i.e. Lemma 3 is true for any $n \geq 1$.

Lemma 4. For any $n \geq 0$ the following relations hold:

1. $A_{a, k}\left\{\frac{(a-x)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)}\right\}=A_{a, k}^{*}\left\{\frac{(a-x)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)}\right\}=0, k \geq n+1, x \in(0, a)$;
2. $\left.A_{a, n}^{*}\left\{\frac{(a-x)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)}\right\}\right|_{x=a}=(-1)^{n}$;
3. $\left.A_{a, k}^{*}\left\{\frac{(a-x)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)}\right\}\right|_{x=a}=0, \quad 0 \leq k \leq n-1$.

Lemma 4 is easy to prove similarly to the proof of Lemma 1 from [2] .
Lemma 5. For any $n \geq 0$ the coefficients $\left\{C_{k}\right\}_{0}^{n}$ of the sum

$$
\begin{equation*}
P_{n}(x)=\sum_{k=0}^{n} C_{k} \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}, \tag{25}
\end{equation*}
$$

can be determined by the formulas

$$
\begin{equation*}
C_{k}=\left.(-1)^{k} A_{a, k}^{*}\left\{P_{n}(x)\right\}\right|_{x=a}, \quad 0 \leq k \leq n \tag{26}
\end{equation*}
$$

Proof. Assuming that $0 \leq j \leq n$. We apply the operator $A_{a, j}^{*}$ to the function $P_{n}(x)$. Then, using 22, and 24, we can have

$$
\begin{gather*}
A_{a, j}^{*} P_{n}(x)=\sum_{k=0}^{n} C_{k} A_{a, j}^{*}\left\{\frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}\right\}= \\
=C_{j} A_{a, j}^{*}\left\{\frac{(a-x)^{\lambda_{j}}}{\Gamma\left(1+\lambda_{j}\right)}\right\}+\sum_{k=j+1}^{n} C_{k} A_{a, j}^{*}\left\{\frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}\right\} . \tag{27}
\end{gather*}
$$

From 27 for $x=a$ we get $\left.A_{a, j}^{*}\left\{P_{n}(x)\right\}\right|_{x=a}=(-1)^{j} C_{j}, \quad 0 \leq j \leq n$, i.e. $C_{j}=\left.(-1)^{j} A_{a, j}^{*}\left\{P_{n}(x)\right\}\right|_{x=a}$.

We denote by $C_{n+1}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$ the set of functions $f(x)$ satisfying the following conditions:

1) the functions $A_{a, k}^{*} f(x), k=0,1, \ldots, n$, are continuous on $[0, a]$;
2) the functions $A_{a, k} f(x), k=0,1, \ldots, n, n+1$, are continuous on $(0, a)$ and belongs to $L(0, a)$.
It is easy to see that each the function $\frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}, k=0,1, \ldots$, and each polynomial $P_{n}(x)=\sum_{k=0}^{n} C_{k} \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}$ belongs to the class $C_{n+1}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$.

We prove the following theorem.
Theorem 1. If $f(x) \in C_{n+1}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$, then for any $n \geq 1$

$$
\begin{align*}
& f(x)=\sum_{k=0}^{n}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}+R_{n}(x) \tag{28}\\
& R_{n}(x)=\frac{(-1)^{n+1}}{\Gamma\left(1+\lambda_{n}\right)} \int_{x}^{a}(t-x)^{\lambda_{n}} A_{a, n+1} f(t) d t .
\end{align*}
$$

Proof. We put $P_{n}(x)=\sum_{k=0}^{n}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}$ and $R_{n}(x)=f(x)-$ $P_{n}(x)$. We notice that

$$
\begin{equation*}
\left.A_{a, k}^{*}\left\{R_{n}(x)\right\}\right|_{x=a}=0, k=0,1,2, \ldots, n ; A_{a, n+1}\left\{R_{n}(x)\right\}=A_{a, n+1} f(t) \tag{29}
\end{equation*}
$$

Since $A_{a, n+1}\left\{R_{n}(x)\right\}=\prod_{j=1}^{n} D_{a}^{1 / \rho_{j}} R_{n}^{\prime}(x)$ and $\left.D_{a}^{-\alpha_{k}} A_{a, k} R_{n}^{\prime}(x)\right|_{x=a}=0, k=0,1, \ldots, n$, using Lemma 3. we get $R_{n}(x)=\frac{(-1)^{n+1}}{\Gamma\left(1+\lambda_{n}\right)} \int_{x}^{a}(t-x)^{\lambda_{n}} A_{a, n+1} f(t) d t$.

Note that the Taylor-Maclaurin type formulae are obtained in the papers [3-8] by author and also in articles [9,11].
3. $\left\langle\rho_{j}\right\rangle$ Completely Monotone Functions. We denote by $C_{\infty}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$, the set of functions satisfying $f(x) \in C_{n+1}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$ for any $n \geq 0$. We say a function $f(x)$ is $\left\langle\rho_{j}\right\rangle$ completely monotone, if

1. $f(x) \in C_{\infty}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$;
2. $(-1)^{n} A_{a, n} f(x) \geq 0, A_{a, 0} \equiv f, n \geq 0, \quad x \in(0, a)$.

We denote by $C_{\infty}^{*}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$ the class of $\left\langle\rho_{j}\right\rangle$ completely monotone functions.

Theorem 2. Let $f(x) \in C_{\infty}^{*}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$ and $\sum_{j=1}^{\infty} 1 / \rho_{j}=\lambda_{\infty}=+\infty$. Then

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}, \quad x \in(0, a] \tag{32}
\end{equation*}
$$

Proof. From (28) we have

$$
\begin{aligned}
& f(x)=\sum_{k=0}^{n}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}+R_{n}(x) \\
& R_{n}(x)=\frac{(-1)^{n+1}}{\Gamma\left(1+\lambda_{n}\right)} \int_{x}^{a}(t-x)^{\lambda_{n}} A_{a, n+1} f(t) d t
\end{aligned}
$$

Observe, that if $(-1)^{k} A_{a, k} f(x) \geq 0$, then $(-1)^{k} A_{a, k}^{*} f(x) \geq 0, k=0,1, \ldots$, since by 14 we have $A_{a, k}^{*} f(x) \equiv D_{a}^{-\alpha_{k}} A_{a, k} f(x)$. Let x_{0} be some fixed number and $0<x_{0}<x<t<a$. Then

$$
\begin{gather*}
0 \leq R_{n}(x)=\frac{1}{\Gamma\left(1+\lambda_{n}\right)} \int_{x}^{a}(t-x)^{\lambda_{n}}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t \leq \tag{33}\\
\leq \max _{x \leq t \leq a}\left(\frac{t-x}{t-x_{0}}\right)^{\lambda_{n}} \frac{1}{\Gamma\left(1+\lambda_{n}\right)} \int_{x_{0}}^{a}\left(t-x_{0}\right)^{\lambda_{n}}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t
\end{gather*}
$$

On the other hand,

$$
\begin{gather*}
f\left(x_{0}\right)=\sum_{k=0}^{n}(-1)^{k} A_{a, k}^{*} f(a) \frac{\left(a-x_{0}\right)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}+ \tag{34}\\
+\frac{1}{\Gamma\left(1+\lambda_{n}\right)} \int_{x_{0}}^{a}\left(t-x_{0}\right)^{\lambda_{n}}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t .
\end{gather*}
$$

From (34) it follows

$$
\begin{equation*}
R_{n}\left(x_{0}\right)=\frac{1}{\Gamma\left(1+\lambda_{n}\right)} \int_{x_{0}}^{a}\left(t-x_{0}\right)^{\lambda_{n}}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t \leq f\left(x_{0}\right) \tag{35}
\end{equation*}
$$

From (33) and (35) we can have

$$
\begin{equation*}
0 \leq R_{n}(x) \leq \max _{x \leq t \leq a}\left(\frac{t-x}{t-x_{0}}\right)^{\lambda_{n}} f\left(x_{0}\right) \tag{36}
\end{equation*}
$$

Obviously $\max _{x \leq t \leq a}\left(\frac{t-x}{t-x_{0}}\right)^{\lambda_{n}}=\left(\frac{a-x}{a-x_{0}}\right)^{\lambda_{n}} \rightarrow 0$, as $\lambda_{n} \xrightarrow[n \rightarrow \infty]{ }+\infty$, consequently, from 36) we get $\lim _{n \rightarrow \infty} R_{n}(x)=0, \forall x \in(0, a]$, i.e. $f(x)=\sum_{k=0}^{\infty}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}$.

Theorem 3. Let $f(x) \in C_{\infty}^{*}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$ and $\sum_{j=1}^{\infty} 1 / \rho_{j}=\lambda_{\infty}<+\infty$.
Then there exists a function $\mu(x)$ that is non-increasing on $(0, a]$ and bounded on any interval $\left[a_{1}, a\right] \subset(0, a]$ such that $f(x)$ possesses the representation

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}-\frac{1}{\Gamma\left(1+\lambda_{\infty}\right)} \int_{x}^{a}(t-x)^{\lambda_{\infty}} d \mu(t), x \in(0, a) \tag{37}
\end{equation*}
$$

Proof. Denote

$$
\begin{equation*}
g_{n}(x)=\int_{x}^{a}(-1)^{n+1} A_{a, n+1} f(t) d t, \quad n \geq 1, \quad x \in(0, a] \tag{38}
\end{equation*}
$$

Let us show that the sequence $\left\{g_{n}(x)\right\}_{1}^{\infty}$ satisfies the conditions of Helly's first theorem. Namely, for $x \in(0, a]$ we have

$$
\begin{equation*}
0 \leq g_{n}(x) \leq M, \quad \bigvee_{0}^{a}\left(g_{n}\right) \leq M, n \geq 1 \tag{39}
\end{equation*}
$$

Let $0<x_{1}<x_{2}<x<a$. Since $\lim _{n \rightarrow \infty} \frac{\left(x_{2}-x_{1}\right)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)}=\frac{\left(x_{2}-x_{1}\right)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}$, there exists number n_{0} such that for $n>n_{0}, \frac{\left(x_{2}-x_{1}\right)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)}>\frac{1}{2} \cdot \frac{\left(x_{2}-x_{1}\right)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}$, and consequently

$$
\begin{align*}
& \quad \frac{1}{2} \cdot \frac{\left(x_{2}-x_{1}\right)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)} \int_{x}^{a}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t \leq \\
& \quad \leq \frac{\left(x_{2}-x_{1}\right)^{\lambda_{n}}}{\Gamma\left(1+\lambda_{n}\right)} \int_{x}^{a}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t \leq \tag{40}\\
& \leq \frac{1}{\Gamma\left(1+\lambda_{n}\right)} \int_{x_{1}}^{a}\left(t-x_{1}\right)^{\lambda_{n}}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t .
\end{align*}
$$

Observe that

$$
\begin{equation*}
\frac{1}{\Gamma\left(1+\lambda_{n}\right)} \int_{x_{1}}^{a}\left(t-x_{1}\right)^{\lambda_{n}}\left\{(-1)^{n+1} A_{a, n+1} f(t)\right\} d t=R_{n}\left(x_{1}\right) \leq f\left(x_{1}\right) \tag{41}
\end{equation*}
$$

From 40 and 41 we get $\frac{1}{2} \cdot \frac{\left.x_{2}-x_{1}\right)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)} g_{n}(x) \leq f\left(x_{1}\right)$, i.e.

$$
\begin{equation*}
g_{n}(x) \leq \frac{2 \Gamma\left(1+\lambda_{\infty}\right)}{\left(x_{2}-x_{1}\right)^{\lambda_{\infty}}} f\left(x_{1}\right), \quad 0<x_{1}<x_{2}<x<a \tag{42}
\end{equation*}
$$

It is easy to see that $\bigvee_{x}^{a}\left(g_{n}\right)=g_{n}(x)-g_{n}(a)=g_{n}(x) \leq \frac{2 \Gamma\left(1+\lambda_{\infty}\right) f\left(x_{1}\right)}{\left(x_{2}-x_{1}\right)^{\lambda_{\infty}}}\left(\forall n \geq 1, g_{n}(x)\right.$ is non-increasing). Using Helly's first theorem, we conclude from (42) that there exists a subsequence $g_{n_{k}}(x)$ such that $\lim _{n_{k} \rightarrow \infty} g_{n_{k}}(x)=\mu(x), x \in(0, a]$. We note that

$$
\begin{gather*}
R_{n_{k}}(x)=\frac{1}{\Gamma\left(1+\lambda_{n_{k}}\right)} \int_{x}^{a}(t-x)^{\lambda_{n_{k}}}\left\{(-1)^{n_{k}+1} A_{a, n_{k}+1} f(t)\right\} d t= \\
=-\frac{1}{\Gamma\left(1+\lambda_{n_{k}}\right)} \int_{x}^{a}(t-x)^{\lambda_{n_{k}}} d\left(\int_{t}^{a}(-1)^{n_{k}+1} A_{a, n_{k}+1} f(\tau) d \tau\right)= \tag{43}\\
=-\frac{1}{\Gamma\left(1+\lambda_{n_{k}}\right)} \int_{x}^{a}(t-x)^{\lambda_{n_{k}}} d\left\{g_{n_{k}}(t)\right\} .
\end{gather*}
$$

From here, using Helly's second theorem, we get

$$
\lim _{n_{k} \rightarrow \infty} R_{n_{k}}(x)=-\frac{1}{\Gamma\left(1+\lambda_{\infty}\right)} \int_{x}^{a}(t-x)^{\lambda_{\infty}} d \mu(t)
$$

hence $f(x)=\sum_{k=0}^{\infty}(-1)^{k} A_{a, k}^{*} f(a) \frac{(a-x)^{\lambda_{k}}}{\Gamma\left(1+\lambda_{k}\right)}-\frac{1}{\Gamma\left(1+\lambda_{\infty}\right)} \int_{x}^{a}(t-x)^{\lambda_{\infty}} d \mu(t)$.
In conclusion, consider the following example.
Let $f(x)=\frac{(a-x)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}, \quad x \in[0, a]$. We showed that $f(x) \in C_{\infty}^{*}\left\{(0, a),\left\langle\rho_{j}\right\rangle\right\}$. Easy to get

$$
\begin{gather*}
A_{a, k}\left\{\frac{(a-x)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}\right\}=\frac{(-1)^{k}(a-x)^{\lambda_{\infty}-\sum_{j=1}^{k-1} 1 / \rho_{j}-1}}{\Gamma\left(\lambda_{\infty}-\sum_{j=1}^{k-1} 1 / \rho_{j}\right)}, \tag{44}\\
(-1)^{k} A_{a, k}\left\{\frac{(a-x)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}\right\} \geq, k=0,1, \ldots, \\
(-1)^{k} A_{a, k}^{*}\left\{\frac{(a-x)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}\right\}=\frac{(a-x)^{\lambda_{\infty}-\sum_{j=1}^{k} 1 / \rho_{j}}}{\Gamma\left(\lambda_{\infty}-\sum_{j=1}^{k} 1 / \rho_{j}+1\right)}, \quad x \in[0, a] . \tag{45}\\
\left.A_{a, k}^{*}\left\{\frac{(a-x)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}\right\}\right|_{x=a}=0, \quad k=0,1, \ldots \tag{46}
\end{gather*}
$$

From $\sqrt[37]{ }$ we get $f(x)=\frac{(a-x)^{\lambda_{\infty}}}{\Gamma\left(1+\lambda_{\infty}\right)}=-\frac{1}{\Gamma\left(1+\lambda_{\infty}\right)} \int_{x}^{\infty}(t-x)^{\lambda_{\infty}} d \mu(t)$,
where $\mu(t)= \begin{cases}2, & 0 \leq t<a, \\ 1, & t=a .\end{cases}$
Received 12.12.2017

REFERENCES

1. Dzhrbashyan M.M., Sahakyan B.A. Classes of Formulas and Expansions of Taylor-Maclaurin Type Associated with Differential Operators of Fractional Order. // Izv. AN SSSR. Matematica, 1975, v. 39, № 1, p. 69-122 (in Russian).
2. Sahakyan B.A. Differential Operators of Fractional Orders and Associated with $\left\langle\rho_{j}\right\rangle$ Absolutely Monotone Functions. // Izv. AN Arm. SSR. Ser. Matematica, 1974, № 4, p. 285-307 (in Russian).
3. Dzhrbashyan M.M., Sahakyan B.A. General Classes of Formulae of Taylor-Maclaurin Type. // Izv. AN Arm. SSR. Ser. Matematica, 1977, v. XII, № 1, p. 66-82 (in Russian).
4. Dzhrbashyan M.M., Sahakyan B.A. On Expansions into Series of Generalized Absolutely Monotone Functions. // Analysis Mat., 1981, v. 7, № 2, p. 85-106 (in Russian).
5. Sahakyan B.A. Classes of Taylor-Maclaurin Type Formulae in Complex Domain. // Proceedings of the YSU. Physical and Mathematical Sciences, 2011, № 2, p. 3-10.
6. Sahakyan B.A. General Classes of Taylor-Maclaurin Type Formulas in Complex Domain. // Proc. of the YSU. Physical and Mathematical Sciences, 2012, № 2, p. 20-26.
7. Sahakyan B.A. On the Representation of $\left\langle\rho_{j}, W_{j}\right\rangle$ Absolute Monotone Functions. I. // Proceedings of the YSU. Physical and Mathematical Sciences, 2014, № 1, p. 26-34.
8. Sahakyan B.A. On the Representation of $\left\langle\rho_{j}, W_{j}\right\rangle$ Absolute Monotone Functions. II. // Proceedings of the YSU. Physical and Mathematical Sciences, 2014, № 2, p. 30-38.
9. Badalyan H.V. Completely Regular Monotone Functions. // Izv. AN Arm. SSR. Ser. Physmat. Nauki, 1962, v. XV, № 3, p. 3-16 (in Russian).
10. Dzhrbashyan M.M. Integral Transforms and Representations of Functions in the Complex Domain. M.: Nauka, 1966 (in Russian).
11. Dzhrbashyan M.M., Nersesyan A.B. On the Structure of Certain Special Biorthogonal Systems. // Izv. AN Arm. SSR. Physmat. Nauki, 1959, v. 12, № 5, p. 17-42 (in Russian).

[^0]: * E-mail: maneat@rambler.ru

