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In the paper Taylor–Maclaurin type formulas for some classes of functions
are obtained. The main result of this study introduces an idea of the generalized
classes of 〈ρ j〉 completely monotone function. Under the various conditions(

∞

∑
j=1

1
ρ j

<+∞,
∞

∑
j=1

1
ρ j

=+∞,

)
the terms of their representation are obtained

and some related theorems are proved.
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Introduction. In the present paper are considered a system of functions{
(a− x)λn

Γ(1+λn)

}∞

0

(1◦)

and a system of operators{
Aa,n f

}∞

0 ,
{

A∗a,n f
}∞

0 , Aa,n f (x) =
n−1
∏
j=0

D1/ρ j
a f (x),A∗a,n f (x) = D−αn

a Aa,n f (x),n≥ 1, (2◦)

Aa,0 f ≡ f , x∈ [0,a], λn =
n
∑
j=1

1
ρ j

, ρ j ≥ 1, ρ0 = 1, λ0 = 0, 1−α j =
1
ρ j

, j = 1,2, . . . ;

D−α j
a f (x) =

1
Γ(α j)

∫ a

x
(t− x)α j−1 f (t)dt, D1/ρ j

a f (x) =
d
dx

D−α j
a f (x), j = 0,1, . . .

Note that in the papers [1–8] by author and prof. Dzhrbashyan were obtained
various generalized formulas of Taylor–Maclaurin type, using operators of Riemann–
Liouville type of fraction order and functions of Mittag–Leffler type. In these papers
it was introduced the concept of absolutely monotone functions 〈ρ〉, 〈ρ j〉, 〈ρ, λ j〉,
〈ρ j, Wj〉 and the problems of their representation were studied.

In the present paper we introduce the concept of generalized completely
monotone functions 〈ρ j〉 and study the problems of their representation. Note that
using some other operators prof. Badalyan has introduced the concept of generalized
regular monotone functions [9].
∗ E-mail: maneat@rambler.ru
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We introduce general classes 〈ρ j〉 of completely monotone functions and prove
some representation theorems under the conditions:

a)
∞

∑
j=1

1/ρ j =+∞, f (x) =
∞

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
, x ∈ [0,a];

b)
∞

∑
j=1

1/ρ j <+∞, f (x)=
∞

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
− 1

Γ(1+λ∞)

∫ a

x
(t−x)λ∞dµ(t),

x ∈ (0,a], λ∞ =
∞

∑
j=1

1
ρ j

.

Preliminary Information and Lemmas. Let f (x) be an arbitrary function
from L(0, l) (0 < l <+∞). The function

0D−α f (x)≡ D−α f (x)≡ 1
Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, x ∈ (0, l), (1)

is called the Riemann–Liouville integral of the function f (x) of order
α (0 < α <+∞) with a lower limit at the point x = 0, and the function

D−α

l f (x)≡ 1
Γ(α)

∫ l

x
(t− x)α−1 f (t)dt, x ∈ (0, l), (2)

is called the Riemann–Liouville integral of function f (x) of order α with an upper
limit at the point x = l.

At each Lebesgue point of the function f (x) and consequently almost
everywhere on (0, l), we have lim

α→+0
D−α f (x) = f (x), so we define D0 f (x) = f (x),

x ∈ (0, l). Let ρ ≥ 1, 1/ρ = 1−α (0≤ α < 1). Then the function

0D1/ρ f (x)≡ D1/ρ f (x)≡ d
dx

D−α f (x) (3)

is called Riemann–Liouville derivative of order 1/ρ for f (x) with lower limit at x= 0.

D1/ρ

l f (x)≡
dD−α

l f (x)
dx

is called the derivative of the function f (x) with upper
limit at x = l (see details in [10], Chap. 9).

The function of Mittag–Leffler type

Eρ(z,µ) =
∞

∑
n=0

zn

Γ(µ +nρ−1)
, ρ > 0, (4)

is an entire function of order ρ and type 1 for any value of the parameter µ [10].
For any µ > 0, α > 0 the following formula holds:

1
Γ(α)

∫ z

0
(z− t)α−1Eρ(λ t1/ρ , µ)tµ−1dt = zµ+α−1Eρ(λ z1/ρ , µ +α), (5)

where λ is a complex parameter and the integration is taken over a curve connecting
the points 0 with z ( [10], Eq. (1.16)).

L e m m a A . [1]. Let ϕ(x) ∈ L(0, l) (0 < l < +∞) and let λ be an
arbitrary parameter. In the class of functions y(x) ∈ L(0, l), D1/ρy(x) ∈ L(0, l) the
problem of Cauchy type

D1/ρy(x)+λy(x) = ϕ(x), x ∈ (0, l); D−αy(x)
∣∣
x=0 = 0, (6)

has a unique solution Y (x,λ ), which can be expressed in the form

Y (x,λ ) =
∫ x

0
eρ(x− t,λ )ϕ(t)dt, x ∈ (0, l), eρ(x,λ ) = Eρ(−λx1/ρ ,1/ρ)x1/ρ−1. (7)
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From the Lemma A it particularly follows that in case ϕ(x)≡ 0 we have
D1/ρy(x)+λy(x) = 0, D−αy(x)

∣∣
x=0 = 0,

and the problem of Caushy type has a unique solution y(x)≡ 0. The following lemma
is a version of Lemma A.

L e m m a 1. Let ϕ(x) ∈ L(0,a), 0 < a < +∞, and λ be an arbitrary
parameter. Then in the class of functions satisfying the conditions y(x) ∈ L(0,a),
and D1/ρ

a y(x) ∈ L(0,a) the problem of Cauchy type

D1/ρ
a y(x)−λy(x) = ϕ(x), x ∈ (0,a), D−α

a y(x)
∣∣
x=a = 0, (8)

has a unique solution Y (x,λ ), which can be expressed in the form

Y (x,λ ) =−
∫ a

x
eρ(t− x,λ )ϕ(t)dt. (9)

From (9) for λ = 0 we get y(x) =− 1
Γ(1/ρ)

∫ a

x
(t− x)1/ρ−1

ϕ(t)dt.

L e m m a 2. Let ϕ(x) ∈ L(0,a), ρ ≥ 1, 1−α = 1/ρ. Then in the class of
functions y(x) ∈ L(0,a), y′(x) ∈ L(0,a), D1/ρ

a y′(x) ∈ L(0,a) Cauchy type problem

D1/ρ
a y′(x) = ϕ(x), x ∈ (0,a), y(x)

∣∣
x=a = 0, y′(x)

∣∣
x=a = 0, D−α

a y′(x)
∣∣
x=a = 0, (10)

has a unique solution

y(x) =
1

Γ(1+1/ρ)

∫ a

x
(t− x)1/ρ

ϕ(t)dt. (11)

2. Formula of Taylor–Maclaurin Type. Let sequences {ρk}∞
0 , ρ0 = 1; {αk}∞

0 ,
α0 = 0; {λk}∞

0 , λ0 = 0 satisfy the conditions

ρk ≥ 1, αk = 1−1/ρk, λk =
k

∑
j=1

1/ρ j, k = 1,2, . . . (12)

Consider the sequence of operators on an admissible class of functions f (x).
{Aa,n f (x)}∞

0 , {A∗a,n f (x)}∞
0 defined by

Aa,n f (x) =
n−1

∏
j=0

D1/ρ j
a f (x) (Aa,0 f ≡ f , Aa,1 f ≡ f ′(x)), n≥ 0,

A∗a,n f (x) = D−αn
a Aa,n f (x), A∗a,0 f ≡ f ,

(13)

where D1/ρ j
a f (x)≡ d

dx
D−α j

a f (x), D−α j
a f (x)=

1
Γ(α j)

∫ a

x
(t−x)α j−1 f (t)dt, j = 0,1, ...

Consider the sequence of functions{
(a− x)λk

Γ(1+λk)

}∞

0

, x ∈ [0,a]. (14)

Note that operators like (13) and a system like (14) were introduced in [2].
L e m m a 3. Let ϕ(x)∈ L(0,a). Then in class of functions Aa,ky(x)∈ L(0,a)(

Aa,0y(x)≡ y(x), Aa,1y(x) = y′(x)
)

the problem of Cauchy type
Aa,n+1y′(x) = ϕ(x), y(x)

∣∣
x=a = 0, D−αk

a Aa,ky′(x)
∣∣
x=a = 0 (k = 0,1, . . . ,n) (15)

has a unique solution Y (x), which can be expressed in the form

Y (x) =
(−1)n+1

Γ(1+λn)

∫ a

x
(t− x)λnϕ(t)dt, λn =

n

∑
k=1

1
ρk

. (16)

Notice, that for n = 1,2 Lemma 3 is true according to Lemma 2.
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P r o o f . We carry out an induction argument to prove of the Lemma.
Assuming that Lemma 3 is true, we show that the problem of Cauchy type

Aa,n+2y′(x) = ϕ(x), x ∈ (0,a),y(x)
∣∣
x=a = 0,

D−αk
a Aa,ky(x)

∣∣
x=a = 0, k = 0,1,2, . . . ,n,n+1,

(17)

has a unique solution

y(x) =
(−1)n+2

Γ(1+λn+1)

∫ a

x
(t− x)λn+1ϕ(t)dt. (18)

Note that Aa,n+2y′(x) = D1/ρn+1
a (Aa,n+1y′(x)) = ϕ(x).

Denoting Aa,n+1y′(x) ≡ Y (x) we can write D1/ρn+1
a Y (x) = ϕ(x).

According to Lemma 1 (for λ = 0), Y (x)=− 1
Γ(1/ρn+1)

∫ a

x
(t−x)1/ρn+1−1

ϕ(t)dt, i.e.

Aa,n+1y′(x) =− 1
Γ(1/ρn+1)

∫ a

x
(t− x)1/ρn+1−1

ϕ(t)dt. (19)

Since Lemma 3 in true, we have

y(x) =
(−1)n+1

Γ(1+λn)

∫ a

x
(t− x)λndt

(
− 1

Γ(1/ρn+1)

∫ a

t
(τ− t)1/ρn+1−1

ϕ(τ)dτ

)
dt =

=
(−1)n+2

Γ(1+λn)Γ(1/ρn+1)

∫ a

x
ϕ(τ)dτ

∫
τ

x
(t− x)λn(τ− t)1/ρn+1−1dt.

(20)
Obviously,∫

τ

x
(t− x)λn(τ− t)1/ρn+1−1dt = (τ− x)λn+1/ρn+1

∫ 1

0
(1−ν)λnν

1/ρn+1−1dν =

=
(τ− x)λn+1Γ(1+λn)Γ(1/ρn+1)

Γ(1+λn+1)
.

(21)

From (20) and (21) we get y(x) =
(−1)n+2

Γ(1+λn+1)

∫ a

x
(t − x)λn+1ϕ(t)dt,

i.e. Lemma 3 is true for any n≥ 1.
L e m m a 4. For any n≥ 0 the following relations hold:

1. Aa,k

{
(a− x)λn

Γ(1+λn)

}
= A∗a,k

{
(a− x)λn

Γ(1+λn)

}
= 0, k ≥ n+1, x ∈ (0,a); (22)

2. A∗a,n

{
(a− x)λn

Γ(1+λn)

}∣∣∣∣∣
x=a

= (−1)n; (23)

3. A∗a,k

{
(a− x)λn

Γ(1+λn)

}∣∣∣∣∣
x=a

= 0, 0≤ k ≤ n−1. (24)

Lemma 4 is easy to prove similarly to the proof of Lemma 1 from [2] .
L e m m a 5. For any n≥ 0 the coefficients

{
Ck
}n

0 of the sum

Pn(x) =
n

∑
k=0

Ck
(a− x)λk

Γ(1+λk)
, (25)

can be determined by the formulas
Ck = (−1)kA∗a,k{Pn(x)}

∣∣
x=a, 0≤ k ≤ n. (26)
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P r o o f . Assuming that 0≤ j ≤ n. We apply the operator A∗a, j to the function
Pn(x). Then, using (22) and (24), we can have

A∗a, jPn(x) =
n

∑
k=0

CkA∗a, j

{
(a− x)λk

Γ(1+λk)

}
=

=C jA∗a, j

{
(a− x)λ j

Γ(1+λ j)

}
+

n

∑
k= j+1

CkA∗a, j

{
(a− x)λk

Γ(1+λk)

}
.

(27)

From (27) for x = a we get A∗a, j{Pn(x)}
∣∣
x=a = (−1) jC j, 0 ≤ j ≤ n, i.e.

C j = (−1) jA∗a, j{Pn(x)}
∣∣∣∣
x=a

. �

We denote by Cn+1{(0,a),〈ρ j〉} the set of functions f (x) satisfying the
following conditions:

1) the functions A∗a,k f (x),k = 0,1, . . . ,n, are continuous on [0,a];
2) the functions Aa,k f (x),k = 0,1, . . . ,n,n+1, are continuous on (0,a) and

belongs to L(0,a).

It is easy to see that each the function
(a− x)λk

Γ(1+λk)
, k = 0,1, . . . , and each

polynomial Pn(x) =
n

∑
k=0

Ck
(a− x)λk

Γ(1+λk)
belongs to the class Cn+1{(0,a),〈ρ j〉}.

We prove the following theorem.
T h e o r e m 1. If f (x) ∈Cn+1{(0,a),〈ρ j〉}, then for any n≥ 1

f (x) =
n

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
+Rn(x),

Rn(x) =
(−1)n+1

Γ(1+λn)

∫ a

x
(t− x)λnAa,n+1 f (t)dt.

(28)

P r o o f . We put Pn(x) =
n

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
and Rn(x) = f (x)−

Pn(x). We notice that
A∗a,k{Rn(x)}

∣∣
x=a = 0, k = 0,1,2, . . . ,n; Aa,n+1{Rn(x)}= Aa,n+1 f (t). (29)

Since Aa,n+1{Rn(x)}=
n

∏
j=1

D1/ρ j
a R′n(x) and D−αk

a Aa,kR′n(x)
∣∣
x=a = 0, k = 0,1, . . . ,n,

using Lemma 3, we get Rn(x) =
(−1)n+1

Γ(1+λn)

∫ a

x
(t− x)λnAa,n+1 f (t)dt. �

Note that the Taylor–Maclaurin type formulae are obtained in the papers [3–8]
by author and also in articles [9, 11].

3. 〈ρ j〉 Completely Monotone Functions. We denote by C∞{(0,a),〈ρ j〉},
the set of functions satisfying f (x) ∈ Cn+1{(0,a),〈ρ j〉} for any n ≥ 0. We say a
function f (x) is 〈ρ j〉 completely monotone, if

1. f (x) ∈C∞{(0,a),〈ρ j〉}; (30)
2. (−1)nAa,n f (x)≥ 0, Aa,0 f ≡ f , n≥ 0, x ∈ (0,a). (31)

We denote by C∗∞{(0,a),〈ρ j〉} the class of 〈ρ j〉 completely monotone functions.
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T h e o r e m 2. Let f (x) ∈C∗∞{(0,a),〈ρ j〉} and
∞

∑
j=1

1/ρ j = λ∞ =+∞. Then

f (x) =
∞

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
, x ∈ (0,a]. (32)

P r o o f . From (28) we have

f (x) =
n

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
+Rn(x),

Rn(x) =
(−1)n+1

Γ(1+λn)

∫ a

x
(t− x)λnAa,n+1 f (t)dt.

Observe, that if (−1)kAa,k f (x) ≥ 0, then (−1)kA∗a,k f (x) ≥ 0, k = 0,1, . . . ,
since by (14) we have A∗a,k f (x) ≡ D−αk

a Aa,k f (x). Let x0 be some fixed number and
0 < x0 < x < t < a. Then

0≤ Rn(x) =
1

Γ(1+λn)

∫ a

x
(t− x)λn{(−1)n+1Aa,n+1 f (t)}dt ≤

≤ max
x≤t≤a

(
t− x
t− x0

)λn 1
Γ(1+λn)

∫ a

x0

(t− x0)
λn{(−1)n+1Aa,n+1 f (t)}dt.

(33)

On the other hand,

f (x0) =
n

∑
k=0

(−1)kA∗a,k f (a)
(a− x0)

λk

Γ(1+λk)
+

+
1

Γ(1+λn)

∫ a

x0

(t− x0)
λn{(−1)n+1Aa,n+1 f (t)}dt.

(34)

From (34) it follows

Rn(x0) =
1

Γ(1+λn)

∫ a

x0

(t− x0)
λn{(−1)n+1Aa,n+1 f (t)}dt ≤ f (x0). (35)

From (33) and (35) we can have

0≤ Rn(x)≤ max
x≤t≤a

(
t− x
t− x0

)λn

f (x0). (36)

Obviously max
x≤t≤a

(
t− x
t− x0

)λn

=

(
a− x
a− x0

)λn

→ 0, as λn−−−→
n→∞

+∞, consequently, from

(36) we get lim
n→∞

Rn(x) = 0, ∀x ∈ (0,a], i.e. f (x) =
∞

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
.

T h e o r e m 3. Let f (x) ∈C∗∞{(0,a),〈ρ j〉} and
∞

∑
j=1

1/ρ j = λ∞ <+∞.

Then there exists a function µ(x) that is non-increasing on (0,a] and bounded
on any interval [a1,a]⊂ (0,a] such that f (x) possesses the representation

f (x) =
∞

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
− 1

Γ(1+λ∞)

∫ a

x
(t− x)λ∞dµ(t), x ∈ (0,a).

(37)
P r o o f . Denote

gn(x) =
∫ a

x
(−1)n+1Aa,n+1 f (t)dt, n≥ 1, x ∈ (0,a]. (38)
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Let us show that the sequence {gn(x)}∞
1 satisfies the conditions of Helly’s first

theorem. Namely, for x ∈ (0,a] we have

0≤ gn(x)≤M,
a∨
0

(gn)≤M, n≥ 1. (39)

Let 0 < x1 < x2 < x < a. Since lim
n→∞

(x2− x1)
λn

Γ(1+λn)
=

(x2− x1)
λ∞

Γ(1+λ∞)
, there exists number

n0 such that for n > n0,
(x2− x1)

λn

Γ(1+λn)
>

1
2
· (x2− x1)

λ∞

Γ(1+λ∞)
, and consequently

1
2
· (x2− x1)

λ∞

Γ(1+λ∞)

∫ a

x
{(−1)n+1Aa,n+1 f (t)}dt ≤

≤ (x2− x1)
λn

Γ(1+λn)

∫ a

x
{(−1)n+1Aa,n+1 f (t)}dt ≤

≤ 1
Γ(1+λn)

∫ a

x1

(t− x1)
λn{(−1)n+1Aa,n+1 f (t)}dt.

(40)

Observe that
1

Γ(1+λn)

∫ a

x1

(t− x1)
λn{(−1)n+1Aa,n+1 f (t)}dt = Rn(x1)≤ f (x1). (41)

From (40) and (41) we get
1
2
· x2− x1)

λ∞

Γ(1+λ∞)
gn(x)≤ f (x1), i.e.

gn(x)≤
2Γ(1+λ∞)

(x2− x1)λ∞

f (x1), 0 < x1 < x2 < x < a. (42)

It is easy to see that
a∨
x
(gn)= gn(x)−gn(a)= gn(x)≤

2Γ(1+λ∞) f (x1)

(x2− x1)λ∞

(∀n≥ 1, gn(x)

is non-increasing). Using Helly’s first theorem, we conclude from (42) that there
exists a subsequence gnk(x) such that lim

nk→∞
gnk(x) = µ(x), x ∈ (0,a]. We note that

Rnk(x) =
1

Γ(1+λnk)

∫ a

x
(t− x)λnk{(−1)nk+1Aa,nk+1 f (t)}dt =

=− 1
Γ(1+λnk)

∫ a

x
(t− x)λnk d

(∫ a

t
(−1)nk+1Aa,nk+1 f (τ)dτ

)
=

=− 1
Γ(1+λnk)

∫ a

x
(t− x)λnk d{gnk(t)}.

(43)

From here, using Helly’s second theorem, we get

lim
nk→∞

Rnk(x) =−
1

Γ(1+λ∞)

∫ a

x
(t− x)λ∞dµ(t),

hence f (x) =
∞

∑
k=0

(−1)kA∗a,k f (a)
(a− x)λk

Γ(1+λk)
− 1

Γ(1+λ∞)

∫ a

x
(t− x)λ∞dµ(t). �

In conclusion, consider the following example.

Let f (x) =
(a− x)λ∞

Γ(1+λ∞)
, x ∈ [0,a]. We showed that f (x) ∈ C∗∞{(0,a),〈ρ j〉}.

Easy to get
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Aa,k

{
(a− x)λ∞

Γ(1+λ∞)

}
=

(−1)k(a− x)
λ∞−

k−1
∑
j=1

1/ρ j−1

Γ

(
λ∞−

k−1

∑
j=1

1/ρ j

) , (44)

(−1)kAa,k

{
(a− x)λ∞

Γ(1+λ∞)

}
≥, k = 0,1, . . . , (44′)

(−1)kA∗a,k

{
(a− x)λ∞

Γ(1+λ∞)

}
=

(a− x)
λ∞−

k
∑
j=1

1/ρ j

Γ

(
λ∞−

k

∑
j=1

1/ρ j +1

) , x ∈ [0,a]. (45)

A∗a,k

{
(a− x)λ∞

Γ(1+λ∞)

}∣∣∣∣∣
x=a

= 0, k = 0,1, . . . (46)

From (37) we get f (x) =
(a− x)λ∞

Γ(1+λ∞)
= − 1

Γ(1+λ∞)

∫
∞

x
(t − x)λ∞dµ(t),

where µ(t) =

{
2, 0≤ t < a,
1, t = a.
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