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A UNIQUENESS THEOREM FOR A NONLINEAR SINGULAR INTEGRAL
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We study a singular nonlinear integral equation on the real line that appear
in p-adic string theory. A uniqueness theorem for this equation in certain class
of odd functions is proved. At the end of the paper we give examples, satisfying
the conditions of the formulated theorem.
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Introduction. In this paper we study the following boundary value problem:

ϕ
m(x) = (µ(x)−1)ϕn(x)+

∫
R

K(x− t)ϕ(t)dt, x ∈ R, (1)

ϕ(±∞) =±1, (2)

with respect to unknown measurable and odd function ϕ(x) defined on R, where
m and n are given odd numbers and

m > 2n. (3)
µ and K are even functions defined on R and satisfy the following conditions
a) µ(0) = +∞, µ(x)≥ 1, x ∈ R, lim

x→∞
µ(x) = 1;

b) µ−1 ∈
3⋂

p=1
Lp(0,+∞);

c) K(x)≥ 0, x ∈ R, K(x) ↓ in x on R+ := [0,+∞);

d) K ∈ L1(R)∩CM(R),
∞∫
−∞

K(x)dx = 1,
∞∫

0

xK(x)dx <+∞, where CM(R) is the

space of continuous and substantially bounded on R functions.
The Eq. (1) arises in p-adic closed-open string theory [1–6]. In particular, the

boundary value problem (1), (2) describes rolling of tachyon’s open-closed
p-adic strings. Recently in [7] it was proved that the boundary value problem (1), (2)
under the conditions (3), a)–d), has a nontrivial odd solution on the real line besides
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we have

ϕ(x) =
{

f (x), if x > 0,
− f (−x), if x < 0,

(4)

where f (x) is the nonnegative nontrivial solution of the following nonlinear integral
equation with a sum-difference kernel

f m(x) = (µ(x)−1) f n(x)+
∞∫

0

(K(x−t)−K(x+t)) f (t)dt, x > 0, lim
x→∞

f (x) = 1. (5)

Moreover, the solution ϕ(x) has the following properties:
i) ψ(x)≤ ϕ(x)≤ (1+M)

1
m−1 µ

1
n (x), x > 0, where ψ(x) is the solution of the

following boundary value problem

ψ
m(x) =

∞∫
0

(K(x− t)−K(x+ t))ψ(t)dt, x ∈ R+, (6)

lim
x→∞

ψ(x) = 1. (7)

It is also established that ψ(x) is nonnegative, monotone increasing, continuous and
bounded function. Moreover, ψ(0) = 0, 1−ψ ∈ L1(0,+∞);

ii) 1−ϕ ∈ L1(0,+∞), 1+ϕ ∈ L1(−∞,0);
iii) ϕ(±0) =±∞.

Finally, M :=
∞∫
0
(µ(t)−1)dt · sup

x∈R
K(x)<+∞.

The main goal of this paper is to prove the uniqueness of the solution of
boundary value problem (1), (2) in certain class of odd functions.

Uniqueness Theorem. Below we will prove that boundary value problem
(1), (2) in the following class of odd measurable functions on R

M :=
{

ϕ : 1±ϕ ∈ L1(R∓), 0≤ ϕ(x)≤ (1+M)
1

m−1 µ
1
n (x), x > 0)

}
has unique solution.

From the result of work [7] it follows that in the above mentioned class of
functions the boundary value problem (1), (2) is equivalent to the boundary value
problem (6), (7). Hence it is enough to prove the uniqueness of the solution of
boundary value problem (6), (7) in the following class of nonnegative measurable
functions on (0,+∞).

P :=
{

f : 1− f ∈ L1(R+), 0≤ f (x)≤ (1+M)
1

m−1 µ
1
n (x), x > 0)

}
.

We suppose to the contrary the given Eq. (1) in class P has two different solutions f
and f̃ . Then from the simple inequality

0≤ | f (x)− f̃ (x) |≤| 1− f (x) |+ | 1− f̃ (x) |
and due to f , f̃ ∈ P, it can be easily verified that f − f̃ ∈ L1(0,+∞).

Notice that since f and f̃ are nonnegative solutions of Eq. (5), and due to
condition c) the following inequality holds:

K(x− t)≥ K(x+ t), (x, t) ∈ R+×R+.
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Indeed, if x≥ t ≥ 0, then by the monotonicity of K it follows that K(x−t)≥K(x+t).
If 0≤ x≤ t, then once again, using the monotonicity and evenness of K, we obtain

K(x− t) = K(t− x)≥ K(x+ t).
Taking into account the properties of function ψ (see above), from inequality i) and
(4), (5) we get

f m−n(x)> µ(x)−1, f̃ m−n(x)> µ(x)−1, x > 0. (8)
We estimate the difference

| f m(x)− f̃ m(x) |≤ (µ(x)−1) | f n(x)− f̃ n(x) |
∞∫

0

(K(x−t)−K(x+t)) | f (t)− f̃ (t) | dt

or

| f (x)− f̃ (x) |
{

f m−1(x)+ f m−2(x) f̃ (x)+ · · ·+ f (x) f̃ m−2(x)+ f̃ m−1(x)
}
≤

≤ (µ(x)−1) | f (x)− f̃ (x) |
{
( f n−1(x)+ f n−2(x) f̃ (x)+ · · ·+

+ f (x) f̃ n−2(x)+ f̃ n−1(x)
}
+

∞∫
0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt.

(9)

We will prove that the right hand side of the obtained inequality (9) belongs to the
space L1(0,+∞). For this purpose we first multiply both sides of (9) by f (x) and
separately prove that

J1 := (µ(x)−1) | f (x)− f̃ (x) |
{

f n(x)+ f n−1(x) f̃ (x)+ · · ·+

+ f 2(x) f̃ n−2(x)+ f (x) f̃ n−1(x)
}
∈ L1(R+), (10)

J2 := f (x)
∞∫

0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt ∈ L1(R+). (11)

First of all we will prove inclusion (10). Due to the relation f , f̃ ∈ P, taking
into account (4), property (i) and triangle inequalities, we get

0≤| J1 |≤ 2(µ(x)−1)(1+M)
1

m−1 µ
1
n (x)

{
f n(x)+ f n−1(x) f̃ (x)+ · · ·+

+ f 2(x) f̃ n−2(x)+ f (x) f̃ n−1(x)
}
≤ 2n(1+M)

n+1
m−1 (µ(x)−1)µ

n+1
n (x)≤

≤ 2n(1+M)
n+1
m−1

{
(µ(x)−1)3 +2(µ(x)−1)2 +(µ(x)−1)

}
∈ L1(R+),

which immediately implies J1 ∈ L1(R+).
Now we prove that J2 ∈ L1(R+). Using conditions b)–d) and (i), we have

0≤| J2 |≤ (1+M)
1

m−1 (µ
1
n (x)−1)

∞∫
0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt+

+(1+M)
1

m−1

∞∫
0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt ≤
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≤ 2(1+M)
2

m−1 (µ(x)−1)
∞∫

0

(K(x− t)−K(x+ t))µ
1
n (t)dt+

+(1+M)
1

m−1

∞∫
0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt ≤

≤ 2(1+M)
2

m−1 (µ(x)−1)
∞∫

0

(K(x− t)−K(x+ t))(µ(t)−1)dt+

+2(1+M)
2

m−1 (µ(x)−1)
∞∫

0

(K(x− t)−K(x+ t))dt+

+(1+M)
1

m−1

∞∫
0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt ≤

≤ 2(1+M)
m+1
m−1 (µ(x)−1)+

+(1+M)
1

m−1

∞∫
0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt.

Observe that first two terms in last expression belong to space L1(R+). Since
f − f̃ ∈ L1(R+) and K ∈ L1(R)∩CM(R), according to Fubini’s theorem [8], we get

∞∫
0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dt ∈ L1(R+).

Hence J2 ∈ L1(R+). Since J1 ∈ L1(R+), J2 ∈ L1(R+), from (9) it follows that
| f (x)− f̃ (x) | ( f m(x)+ f m−1(x) f̃ (x)+ · · ·+ f 2(x) f̃ m−2(x)+ f (x) f̃ m−1(x))∈ L1(R+).
After multiplying both sides of inequality (9) by function f (x) we can integrate
obtained inequality on (0,+∞). So we get

∞∫
0

| f (x)− f̃ (x) | ( f m(x)+ f m−1(x) f̃ (x)+ · · ·+

+ f 2(x) f̃ m−2(x)+ f (x) f̃ m−1(x))dx≤

≤
∞∫

0

| f (x)− f̃ (x) | (µ(x)−1)( f n(x)+ f n−1(x) f̃ (x)+ · · ·+

+ f 2(x) f̃ n−2(x)+ f (x) f̃ n−1(x))dx+

+

∞∫
0

f (x)
∞∫

0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dtdx.

(12)

Since the kernel K is an even function, taking into account (1) and Fubini’s theorem,
we obtain

∞∫
0

f (x)
∞∫

0

(K(x− t)−K(x+ t)) | f (t)− f̃ (t) | dtdx =
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=

∞∫
0

| f (t)− f̃ (t) |
∞∫

0

(K(x− t)−K(x+ t)) f (x)dtdx =

=

∞∫
0

| f (t)− f̃ (t) |
∞∫

0

(K(t− x)−K(x+ t)) f (x)dtdx =

=

∞∫
0

| f (t)− f̃ (t) | ( f m(t)− (µ(t)−1) f n(t))dt.

Thus, considering last the relation in (12), we get
∞∫

0

| f (x)− f̃ (x) | ( f m−1(x) f̃ (x)+ · · ·+

+ f 2(x) f̃ m−2(x)+ f (x) f̃ m−1(x)− (µ(x)−1) f n−1(x) f̃ (x)−·· ·−

−(µ(x)−1) f 2(x) f̃ n−2(x)− (µ(x)−1) f (x) f̃ n−1(x))dx≤ 0.

This in turn implies
∞∫

0

| f (x)− f̃ (x) |
{

f n−1(x) f̃ (x)( f m−n(x)− (µ(x)−1))+ . . .+ f 2(x) f̃ n−2(x)×

×( f̃ m−n(x)− (µ(x)−1))+ f (x) f̃ n−1(x)( f̃ m−n(x)− (µ(x)−1))
}

dx≤ 0.
(13)

From (13) and (8) it follows that f (x) = f̃ (x) almost everywhere on (0,+∞),
since the function

f n−1(x) f̃ (x)( f m−n(x)− (µ(x)−1))+ . . .+

+ f 2(x) f̃ n−2(x)( f̃ m−n(x)− (µ(x)−1))+ f (x) f̃ n−1(x)( f̃ m−n(x)− (µ(x)−1))

is positive on (0,+∞).
Thus the following theorem holds.
T h e o r e m . Let the conditions (3), a)–d) are satisfied. Then the boundary

value problem (1), (2) in class M of measurable functions has a unique odd solution.
E x a m p l e s . At the end of the work we present several examples of func-

tions K and µ , for which all conditions of the formulated theorem hold:

1. K(x) =
1√
π

e−x2
;

2. K(x) =
α

2
e−α|x|,α > 0;

3. K(x) =
b∫

a

e−|x|sG(s)ds, where a > 0, b≤+∞, G(s)> 0, s ∈ [a,b],

b∫
a

G(s)ds
s

=
1
2
, G(s) ∈ L1[a,b);
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4. µ(x) = 1+
e−x2

| x |α
, α ∈

(
0,

1
3

)
, x ∈ R;

5. µ(x) = 1+
e−|x|

| x | 14
, x ∈ R;

6. µ(x) = 1+
1
| x |α

· 1
1+ x4 , x ∈ R.
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