ON INTEGRAL LOGARITHMIC MEANS OF BLASCHKE PRODUCTS FOR A HALF-PLANE

G. V. MIKAYELYAN *, F. V. HAYRAPETYAN**

Chair of Mathematical Analysis YSU, Armenia

Abstract

Using the Fourier transforms method for meromorphic functions we characterize the behavior of the integral logarithmic mean of arbitrary order of Blaschke products for the half-plane.

MSC2010: 30J10.
Keywords: Blaschke product, integral mean, Fourier transform.
Introduction. Let the sequence of complex numbers $\left\{w_{k}\right\}_{1}^{\infty}=\left\{u_{k}+i v_{k}\right\}_{1}^{\infty}$ in the lower half-plane $G=\{w: \operatorname{Im}(w)<0\}$ satisfy the condition

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|v_{k}\right|<+\infty \tag{1}
\end{equation*}
$$

Then the infinite Blaschke product

$$
B(w)=\prod_{k=1}^{\infty} \frac{w-w_{k}}{w-\bar{w}_{k}}
$$

converges in the half-plane G, determining an analytic function with zeros $\left\{w_{k}\right\}_{1}^{\infty}$.
We define an integral logarithmic mean of order $q, 1 \leq q<+\infty$, of Blaschke products on the half-plane by the formula

$$
m_{q}(v, B)=\left(\left.\int_{-\infty}^{+\infty}|\log | B(u+i v)\right|^{q} d u\right)^{\frac{1}{q}}, \quad-\infty<v<0
$$

Let's denote by $n(v)$ the number of zeros of the function B in the half-plane $\{w: \operatorname{Im}(w) \leq v\}$.

Applying developed by one of the authors "method of Fourier transforms for meromorphic functions" [1,2], in this paper we obtain estimates for $m_{q}(v, B)$ by the function $n(v)$. We state the main results of the present paper. In what follows, p and q are conjugate numbers, that is $\frac{1}{p}+\frac{1}{q}=1$.

[^0]
Theorem 1.

a) In the case $q=1$ we have

$$
m_{1}(v, B)=\int_{-\infty}^{+\infty}|\log | B(u+i v)| | d u=\sqrt{2 \pi} \int_{v}^{0} n(t) d t
$$

b) In the case $1<q<+\infty$ there exists a constant c_{p} such that

$$
\begin{equation*}
m_{q}(v, B) \leq C_{p}|v|^{-\frac{1}{p}} \int_{v}^{0} n(t) d t, \quad-\infty<v<0 \tag{2}
\end{equation*}
$$

Corollary. If $1 \leq q<+\infty$ and for some $0<\alpha<1$

$$
n(v)=O\left(|v|^{-\alpha}\right), v \rightarrow 0
$$

then $m_{q}(v, B)=O\left(|v|^{\frac{1}{q}-\alpha}\right), v \rightarrow 0$.
Theorem 2. If the sequence $\left\{w_{k}\right\}_{1}^{\infty}$ belongs to one vertical half-line $\left\{w_{k}\right\}_{1}^{\infty} \subset\left\{w=u_{0}+i h:-\infty<h<0\right\}$ and $1<q \leq 2$, then for the boundedness of the function $m_{q}(v, B)$ the necessary and sufficient condition is the relation

$$
n(v)=O\left(|v|^{-\frac{1}{q}}\right), \quad v \rightarrow 0
$$

In the case of the circle for $q=2$ the problem was posed by A. Zygmund. In 1969 this problem was solved by the method of Fourier series for meromorphic functions by G.R. MacLane and L.A. Rubel [3]. In [4] V.V. Eiko and A.A. Kondratyuk investigated this problem in the general case, when $1 \leq q<+\infty$.

In the case of a half-plane in [5], the problem of the connection of the boundedness of $m_{2}\left(v, \pi_{\alpha}\right)$ with distributions of zeros of products π_{α} (introduced by A.M. Djhrbashyan [6]), using the method of Fourier transform of meromorphic functions. The function π_{α} coincides with B for $\alpha=0$.

For $-\infty<x<+\infty$ and $-\infty<v<0$ we denote by

$$
\Omega(x, v)=\int_{-\infty}^{+\infty} e^{-i x u} \log |B(u+i v)| d u
$$

The proof of the theorems is based on the following formula [1]

$$
\begin{equation*}
\Omega(x, v)=\sqrt{2 \pi}\left(\frac{e^{|x| v}}{|x|} \sum_{v_{k}>v} e^{-i x u_{k}} \operatorname{sh}\left(|x| v_{k}\right)+\frac{\operatorname{sh}(|x| v)}{|x|} \sum_{v_{k} \leq v} e^{-i x u_{k}+|x| v_{k}}\right), x \neq 0 \tag{3}
\end{equation*}
$$

which connects the Fourier transform of $\log |B|$ with zeros of the function B.
From the formulas

$$
\begin{gathered}
\int_{0}^{\infty} \frac{e^{-a x}-e^{-c x}}{x} \\
\cos b x d x=\frac{1}{2} \log \frac{b^{2}+c^{2}}{b^{2}+a^{2}}, \int_{0}^{\infty} \frac{1-e^{-a x}}{x} \cos b x d x= \\
=\frac{1}{2} \log \left(1+\frac{a^{2}}{b^{2}}\right), a>0, c>0
\end{gathered}
$$

and from (3) it follows the inversion formula

$$
\begin{equation*}
\log |B(u+i v)|=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{i x u} \Omega(x, v) d x, u+i v \neq u_{k}+i v_{k} \tag{4}
\end{equation*}
$$

Lemma. For $x \neq 0$ and $-\infty<v<0$ the following inequality holds:

$$
|\Omega(x, v)| \leq \sqrt{2 \pi} \frac{e^{2|x| v}-1}{2|x| v} \int_{v}^{0} n(t) d t
$$

Proof. We denote

$$
\begin{aligned}
& K(x, v)=\sqrt{2 \pi} \frac{\operatorname{sh}(|x| v)}{|x|} \sum_{v_{k} \leq v} e^{-i x u_{k}+|x| v_{k}} \\
& L(x, v)=\sqrt{2 \pi} \frac{e^{|x| v}}{|x|} \sum_{v_{k}>v} e^{-i x u_{k}} \operatorname{sh}\left(|x| v_{k}\right) .
\end{aligned}
$$

Let's estimate $|K(x, v)|$ and $|L(x, v)|$. We have

$$
\begin{align*}
|K(x, v)| & \leq-\sqrt{2 \pi} \frac{\operatorname{sh}(|x| v)}{|x|} \sum_{v_{k} \leq v} e^{|x| v_{k}}=-\sqrt{2 \pi} \frac{\operatorname{sh}(|x| v)}{|x|} \int_{-\infty}^{v} e^{|x| t} d n(t)= \\
& =-\sqrt{2 \pi} e^{|x| v} \frac{\operatorname{sh}(|x| v)}{|x|} n(v)+\sqrt{2 \pi} \operatorname{sh}(|x| v) \int_{-\infty}^{v} e^{|x| t} n(t) d t . \tag{5}
\end{align*}
$$

Since the fraction $\frac{\operatorname{sh}(-y)}{-y}(-\infty<y<0)$ is a decreasing function, we get

$$
\begin{equation*}
|L(x, v)| \leq-\sqrt{2 \pi} e^{|x| v} \sum_{v_{k}>v} v_{k} \frac{\operatorname{sh}\left(|x| v_{k}\right)}{|x| v_{k}} \leq-\sqrt{2 \pi} e^{|x| v} \frac{\operatorname{sh}(|x| v)}{|x| v} \sum_{v_{k}>v} v_{k} \tag{6}
\end{equation*}
$$

From the condition (1) it follows that $\lim _{v \rightarrow 0} v n(v)=0$. Consequently,

$$
\sum_{v_{k}>v} v_{k}=\int_{v}^{0} t d n(t)=-v n(v)-\int_{v}^{0} n(t) d t
$$

and from (6) we have

$$
\begin{equation*}
|L(x, v)| \leq \sqrt{2 \pi} e^{|x| v} \frac{\operatorname{sh}(|x| v)}{|x|} n(v)+\sqrt{2 \pi} e^{|x| v} \frac{\operatorname{sh}(|x| v)}{|x| v} \int_{v}^{0} n(t) d t \tag{7}
\end{equation*}
$$

From (5)-(7) we obtain

$$
\begin{aligned}
& |\Omega(x, v)| \leq|K(x, v)|+|L(x, v)| \leq \sqrt{2 \pi} \operatorname{sh}(|x| v) \int_{-\infty}^{v} e^{|x| t} n(t) d t+ \\
& \quad+\sqrt{2 \pi} e^{|x| v} \frac{\operatorname{sh}(|x| v)}{|x| v} \int_{v}^{0} n(t) d t \leq \sqrt{2 \pi} \frac{e^{2|x| v}-1}{2|x| v} \int_{v}^{0} n(t) d t .
\end{aligned}
$$

Lemma is proved.

Proof of the Theorem 1. Proof of a) follows from the following equalities

$$
\begin{gathered}
m_{1}(v, B)=\int_{-\infty}^{+\infty}|\log | B(u+i v)| | d u=-\int_{-\infty}^{+\infty} \log |B(u+i v)| d u=-\Omega(0, v)= \\
=-\sqrt{2 \pi}\left(\sum_{v_{k} \geq v} v_{k}+v \sum_{v_{k}<v} 1\right)=-\sqrt{2 \pi}\left(\int_{v}^{0} t d n(t)+v n(v)\right)=\sqrt{2 \pi} \int_{v}^{0} n(t) d t .
\end{gathered}
$$

Let's prove b). First we consider the case $q \geq 2$. Using the Lemma, inversion formula (4) and inequality of Hausdorff-Young, we get

$$
\begin{gather*}
m_{q}(v, B) \leq A_{p}\left(\int_{-\infty}^{+\infty}|\Omega(x, v)|^{p} d x\right)^{\frac{1}{p}} \leq \\
\leq A_{p}\left(\int_{-\infty}^{+\infty}\left(\sqrt{2 \pi} \frac{e^{2|x| v}-1}{2|x| v} \int_{v}^{0} n(t) d t\right)^{p} d x\right)^{\frac{1}{p}}=E_{p}|v|^{-\frac{1}{p}} \int_{v}^{0} n(t) d t \tag{8}
\end{gather*}
$$

where A_{p} and E_{p} are constants and, moreover,

$$
E_{p}=A_{p} 2^{\frac{1}{p}-\frac{1}{2}} \sqrt{\pi}\left(\int_{0}^{\infty}\left(\frac{1-e^{-2 x}}{x}\right)^{p} d x\right)^{\frac{1}{p}}
$$

Now consider the case $1<q<2$. We use the method from [4]. Since $\log m_{q}(v, B)$ is a convex function with respect to $\frac{1}{q}$ [7], we get

$$
\log m_{q}(v, B) \leq(1-\theta) \log m_{\omega}(v, B)+\theta \log m_{s}(v, B)
$$

or

$$
m_{q}(v, B) \leq m_{\omega}(v, B)^{1-\theta} m_{s}(v, B)^{\theta}
$$

where $\frac{1}{q}=\frac{1-\theta}{\omega}+\frac{\theta}{s}, \quad 0 \leq \theta \leq 1$.
Setting $\omega=1$ and $s=2$, we have $\theta=\frac{2}{p}$ and $1-\theta=\frac{2}{q}-1$. Thus,

$$
m_{q}(v, B) \leq m_{1}(v, B)^{\frac{2}{q}-1} m_{2}(v, B)^{\frac{2}{p}}
$$

Since

$$
m_{1}(v, B)=\sqrt{2 \pi} \int_{v}^{0} n(t) d t, m_{2}(v, B) \leq E_{2}|v|^{-\frac{1}{2}} \int_{v}^{0} n(t) d t
$$

we obtain

$$
\begin{equation*}
m_{q}(v, B) \leq(\sqrt{2 \pi})^{\frac{2}{q}-1}\left(E_{2}\right)^{\frac{2}{p}}|v|^{-\frac{1}{p}} \int_{v}^{0} n(t) d t \tag{9}
\end{equation*}
$$

Denoting

$$
D_{p}=(\sqrt{2 \pi})^{\frac{2}{q}-1}\left(E_{2}\right)^{\frac{2}{p}}, C_{p}=\max \left(A_{p}, D_{p}\right)
$$

from (8) and (9) we get (2).
Proof of the Corollary. From the condition $n(v)=O\left(|v|^{-\alpha}\right)$ as $v \rightarrow 0$, we have

$$
\int_{v}^{0} n(t) d t=O\left(\int_{v}^{0}|t|^{-\alpha} d t\right)=O\left(|v|^{1-\alpha}\right)
$$

Hence $m_{q}(v, B)=O\left(|v|^{\frac{1}{q}-\alpha}\right), v \rightarrow 0$.
Proof of the Theorem 2. First we prove the necessity. For $1<q \leq 2$ using the inequality of Hausdorff-Young, we have

$$
\left(\left.\int_{-\infty}^{+\infty}|\log | B(u+i v)\right|^{q} d u\right)^{\frac{1}{q}} \geq M_{p}\left(\int_{-\infty}^{+\infty}|\Omega(x, v)|^{p} d x\right)^{\frac{1}{p}}
$$

where M_{p} is a constant.
Since the sequence $\left\{w_{k}\right\}_{1}^{\infty}$ belongs to one vertical half-line, we conclude

$$
\begin{align*}
|\Omega(x, v)|= & \left|\sqrt{2 \pi}\left(\frac{e^{|x| v}}{|x|} \sum_{v_{k}>v} \operatorname{sh}\left(|x| v_{k}\right)+\frac{\operatorname{sh}(|x| v)}{|x|} \sum_{v_{k} \leq v} e^{|x| v_{k}}\right)\right| \geq \tag{10}\\
& \geq-\sqrt{2 \pi} \frac{e^{|x| v}}{|x|} \sum_{v_{k}>v} \operatorname{sh}\left(|x| v_{k}\right), \quad x \neq 0 .
\end{align*}
$$

Since the fraction $\frac{\operatorname{sh}(-y)}{-y}(-\infty<y<0)$ is a decreasing function, we have

$$
-\frac{\operatorname{sh}\left(|x| v_{k}\right)}{|x|} \geq-v_{k}
$$

and from (10) we get

$$
|\Omega(x, v)| \geq \sqrt{2 \pi} e^{|x| v} \sum_{v_{k}>v}\left(-v_{k}\right) .
$$

Thus, it follows that

$$
\begin{equation*}
m_{q}(v, B) \geq M_{p}\left(\int_{-\infty}^{+\infty}|\Omega(x, v)|^{p} d x\right)^{\frac{1}{p}} \geq \sqrt{2 \pi} M_{p} \frac{1}{|v|^{\frac{1}{p}}} \sum_{v_{k}>v}\left(-v_{k}\right) . \tag{11}
\end{equation*}
$$

Assume that $m_{q}(v, B)$ is bounded. Then for $-\infty<v<0$ in view of (11) there exists a constant N_{p} such that

$$
\int_{v}^{0}(-t) d n(t) \leq N_{p}|v|^{\frac{1}{p}}
$$

It follows that for $v<v^{\prime}<0$

$$
\begin{gather*}
N_{p}|v|^{\frac{1}{p}} \geq \int_{v}^{v^{\prime}}(-t) d n(t)= \\
=\left(-v^{\prime}\right) n\left(v^{\prime}\right)-(-v) n(v)+\int_{v}^{v^{\prime}} n(t) d t \geq\left(-v^{\prime}\right)\left(n\left(v^{\prime}\right)-n(v)\right) . \tag{12}
\end{gather*}
$$

Introducing the notation $\phi(v)=n(v)|v|^{\frac{1}{q}}$ and assuming $v^{\prime}=\frac{v}{2}$, from (12) we obtain

$$
\begin{equation*}
2^{\frac{1}{q}} \phi\left(\frac{v}{2}\right)-\phi(v) \leq N_{p} \tag{13}
\end{equation*}
$$

Observe that $\limsup _{v \rightarrow 0-} \phi(v)<+\infty$. Indeed, otherwise for some sequence of numbers we will have $v_{n}, v_{n} \rightarrow 0, \phi\left(v_{n}\right) \geq \phi(v)$ for every $v \leq v_{n}$ and $\phi\left(v_{n}\right) \rightarrow+\infty$, that is a contradiction, since by (13) :

$$
N_{p} \geq\left(2^{\frac{1}{q}}-1\right) \phi\left(v_{n}\right)+\phi\left(v_{n}\right)-\phi\left(2 v_{n}\right) \geq\left(2^{\frac{1}{q}}-1\right) \phi\left(v_{n}\right)
$$

This proves the necessity.
The proof of sufficiency follows from the Corollary of Theorem 1.

Received 24.10.2018

REFERENCES

1. Mikayelyan G.V. A Fourier Transform Associated with Functions Meromorphic in the Half-Plane. // Izv. AN Arm. SSR. Matematica, 1984, v. XIX, № 5, p. 361-376 (in Russian).
2. Mikayelyan G.V. On The Growth of Functions Meromorphic in the Half-Plane. // Izvestiya Vuzov, 1988, № 4, p. 79-82 (in Russian).
3. Maclane G.R., Rubel B.A. On the Growth of Blaschke Product. // Canadian J. of. Math., 1969, v. XXI, № 3, p. 595-601.
4. Eiko V.V., Kondratyuk A.A. Integral Logarithmic Means of Blaschke Products. // Mat. Zametki, 1998, v. 64, № 2, p. 199-206 (in Russian).
5. Mikayelyan G.V. Study of the Growth of Blaschke-Nevanlinna Type products by Method of Fourier Transforms Method. // Izv. AN Arm. SSR. Ser. Matematica, 1983, v. XVIII, № 3, p. 216-229.
6. Djrbashyan A.M. Functions of Blaschke Type for a Half-Plane. // DAN SSSR, 1979, v. 246, № 6, p. 1295-1298.
7. Burbaki N. Measures. The Integration of Measures. M.: Nauka, 1987 (in Russian).

[^0]: * E-mail: gagik.mikaelyan@ysu.am
 ${ }^{* *}$ E-mail: feliqs.hayrapetyan@ysu.am

