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The paper is devoted to the analysis and programmatic implementation of directed
evolution processes in complex networks. We describe the evolution model and present
requirements for implementation. Then we display the developed system in architectural
form and present the performance evaluation.
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Introduction. Complex networks are widely investigated due to various critical and
collective effects [1,[2]. One of those is the first-order phase transition analogue in random
networks under certain conditions [3]], shed light on the analogy between random networks
behavior and various physical phenomena. These results were obtained by specific modeling
techniques applied to random networks. In general, modeling plays a significant role in
science, since it allows to confirm or decline theoretical hypothesis. The modeling can also
help to discover previously unknown and hardly predictable phenomenon. As a consequence,
the programmatic modeling of random networks and various processes in them becomes
actual. The results should be obtained on large networks to be correct enough, so the problem
of modeling is also a resource usage optimization task.

There are many different libraries in the area of network modeling. Major
mathematical packages include routines to work with graphs and networks. These can be
used for various actions, but they are mostly generic, require acquaintance with specialized
scripting language and do not take into account specific caveats in certain problems. This
paper is devoted to analyzing usage of parallel technologies in some specific processes of
modeling problems. It will be described an appropriate model and presented the architecture
of developed system and main characteristics.

The structure of the paper is following. First the model description will be presented.
Then we will describe, consequential requirements for software implementation. Then, we
present the solution and its analysis and finally, the conclusion and some additional informa-
tion on publications.

Model Description. We consider undirected graph model, which is given by the pair
G = (V,E), where V(G) = {xi,...,xy} is a non-empty finite set of vertices and E(G) is a
finite set of edges. Graph produces a symmetric adjacency matrix A with elements a;; = 1
if (x;,x;) € E(G) and a;; = 0 otherwise. Further, a term nemwork will be used to designate
undirected graph model. The vertices of the graph G, representing the network, are referred
as nodes, and the edges are referred as links.
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Let T(G) be the number of cycles of length 3 of the network G. Now consider the
process of network evolution toward the growth of T (G). The evolution process is a sequence
of transformations of graphs G = Gy, G1,G»,...Gy, k >> 1, i.e. a random process in which
each successive graph is obtained from the previous one by switching links. Switching can
conserve some local or global property. We will consider the following two cases:

1. Degrees of nodes are preserved [3]] (depicted on Fig. 1);

2. Degrees of nodes are not preserved [4]] (depicted on Fig. 2).
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Fig. 1. Link switch with degree conservation. ~ Fig. 2. Link switch without degree conservation.

The value of T(G) may change during the switching. Let A; = T(G;) — T(Gi—1),
1 <i <k, which is a one-step change. To accept or reject network resulting from such a
switch, we use the Metropolis-Hastings algorithm. Namely, the probability @ of acceptance
or rejection of a switch is determined as follows:

ool il A>0, 0
S eMN if A <O,

where u is the parameter of model; higher u values correspond to lower probabilities
that the network is accepted with a lower value of T(G). The evolution continues until the
stabilization, i.e. until the system reaches a state in which the number of cycles of length 3
does not tend to change over a sufficiently long series of switches, ¥(G, i), and the system
only fluctuates around some value. It is natural to associate such a state with equilibrium.
The evolution itself is represented by evolutionary trajectory, T(G, 1), i.e. the variation of
the number of cycles of length 3 along the number of elementary switches (time). |T(G, u)|
will denote the length of trajectory (which coincides with overall evolution time).

The process of network directed evolution with link switching is called randomization.

This model discovers critical effects in random networks during the directed evolution
[36]. In the case of node degree conservation this shows up a disintegration of the network
into dense clusters with weak interconnections. If there is no node degree conservation, then
one can observe a constriction of the network into single dense cluster with a vapor of nodes
around it. Namely, a critical value of the model parameter, L., exists and no critical effects
are observed below L.,. Above L., the evolution leads to the reconstruction of the network.
Depending on the parameters of the input network the evolution requires various run-times
to reach the stabilization.

As a consequence, programmatic implementation needs to satisfy several
requirements in order to allow acceleration and automation of research process.

Requirements for Implementation. Initial analysis of model allows to describe
requirements for programmatic implementation of the evolution modeler:

1. Large Input Networks Support. This requirement comes from network theory, since
it requires large networks (theoretically at o) correct results.

2. Long Trajectories Support. Stabilization may require long trajectories to come on,
and the requirement of generating trajectories with large |T(G, it)| is reasonable.

3. Range-Based Parameter Investigation. Various ranges of the model parameter
should be considered to discover critical effects and their dependency from parameter. Also
same range can be considered with various steps to discover critical point with necessary
precision. Thus system should allow to investigate ranges of parameter with specified step.
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4. Optimal Usage of Resources. This requirement comes out from the previous ones.
Taking into account the volume of calculations for parameter value ranges in the case of large
networks and long trajectories, the resource usage problem can be considered as central.

5. Results Visualization Support. Visualization of trajectories, local/global properties
and networks/matrices allows to make initial conclusions and assumptions on the obtained
output.

A deeper analysis of the network evolution model shows possible places for
application of parallelization techniques:

1. The evolution process is sequential and rather difficult to parallelize. Each step is
dependent on the result of previous one, the network during the step can be changed and next
step of the process should consider this. But analysis of two presented modes of evolution
shows that some critical parts can be parallelized to speed up process. Details are presented
in next section.

2. Modeling process assumes necessity to model evolution for different values of
input parameter ( on the network ensembles. There are two options of parallelization in
this situation. First, parallelize over different values of model parameter 1 and ensemble
members. Parallel instances in this case will be memory independent and processes can be
used for the purpose. Second, parallelize algorithm of evolution (or some parts of it). Parallel
units in this case are memory bounded and threads usage will allow to gain high performance.

Architecture of Implementation. To model network evolution and analyze results
software system was developed with accordance to presented requirements. In Tab. 1 is
shown high level architecture of system.

It consists of 3 layers:

1. User interface provides user with command set to perform the evolution and
analyze the results. Layer consists of shell scripts, which wrap core tools with user-friendly
interface. Each script provides appropriate options to control the execution flow and the
descriptions for them.

2. Helper/intermediate staff provides convenient ways to convert the formats of input
and output networks, converting the output data for the follow-up analysis and for other
similar functionalities. Layer includes scripts and underlying programmatic utilities.

3. Core implements evolution modelers, counters for different network proper-
ties, tools for network manipulation (f.e. extraction of subnetworks and clusters). Layer
uses C++ programming language for high-efficient implementations of tools.

Table 1
High level architecture of system

User Interface (Shell wrapper scripts collection)
Helper Stuff (converters, scripts for third party tools, etc.)

Core (Implementation of evolution modelers, network
manipulation tools, property counters, etc.)

Here we present the structure of the core part. Core consists of several specialized
components:

e Central component of core is network container, which holds nodes and links in
memory and provides efficient ways to manipulate them. Component implements the memory-
efficient and performance-oriented representation of large networks.

e Networks and network ensembles are generated with appropriate component.
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e Specific components allow to calculate various local and global properties of net-
works, calculate eigenvalues and eigenvalue density of network adjacency matrices and
extract subnetworks to perform above-mentioned analyzes.

e Component, which is responsible for evolution modeling, is called evolutioner. It
generates trajectories for input networks with the specified p parameter values. To allow
simultaneous generation of trajectories for a range of parameter values, parallelization with
usage of MPI architecture is applied. MPI is used due to the following reasons:

— scalability from parallel computers to clusters;

— portability between various platforms;

— point-to-point and collective communication between processes;

— automatic and efficient process management.

Graph generator

Evolutioner

Subnetwork
extractor

Property calculators| Eigenvalue analysis

Fig. 3. Architecture of core.

jD: main application

fixed degree task fixed degree task

Fig. 4. Architecture and interaction diagram of core.

main application
task interface

Structure and interaction scheme of evolutioner is presented in Fig. 4. Main application class
defines routines for input data load and distribution between peers, interaction of running
processes through MPI interface and results processing. Task interface defines interaction
mechanism between main application and specific tasks, which define implementation
details. Two tasks are implemented in the system for earlier described variants of edge
switching. Each of implementations use specific caveats in according algorithm to decrease
execution time and get necessary results faster.

Algorithms of Evolution. Let us describe the randomization algorithms.

Algorithm 1. Generic Randomization Algorithm.
1: procedure RANDOMIZATION(G, 1)
2: trajectory < [ ]
prop < CalculateObservedProperty(G)
trajectory.append(prop)
while !Stabilized(trajectory) do
Aprop < RandomizationStep(G, 11)
prop = prop + Aprop
trajectory.append(prop)

D AN A

return trajectory
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Algorithm [T] provides general view on the process of randomization. As an input this
routine accepts the initial graph and the value of model parameter p. The output contains the
sequence of the observed property values on the time domain, i.e. the trajectory. The algo-
rithm calculates the initial value of the property and during the following steps incrementally
updates it. The process continues to perform randomization steps until reaching the stabiliza-
tion. There are two ways to determine this. At first, the track is changed over a large count
of trajectory steps and calculate the variance. This approach make additional calculations at
each step and, thus, increase overall runtime of algorithm. The second, manually define the
number of steps to perform and stop the process after reaching that number.

First, the case with degree-conservation of vertexes is presented. Algorithm[2]contains
sequence of steps performed at each step of randomization in this case. Initially, two random
edges are selected under the condition that sources and targets of those are not connected.
The edges are removed and two new edges are added between the sources and the targets
of the removed edges, respectively. Then, the change in the observed property is calculated.
Based on it, the probability of accept/reject of the performed step is calculated according to
equation [l This probability is used as a parameter for the random generator with Bernoulli
distribution. The outcome defines whether to accept or reject the current step. Finally, the
procedure returns the change of the observed property.

Algorithm 2. Algorithm of Randomization Step with Degree Conservation

1: procedure RANDOMIZATIONSTEP(G, 1)

2: e1 < GetRandomEdge(G)

3 ey < GetRandomEdge(G)

4: RemoveEdge(e;,G)
5: RemoveEdge(e,G)
6.
-
8

AddEdge(e; .source, e;.source,G)
AddEdge(e; .target, e, .target,G)
: A + CalculatePropertyChange(G)
9: p < CalculateProbability(A, i) > Calculated by 1]

10: if 0 == BernoulliDistribution(p) then
11: RevertChanges(G)

12: A0

13: return A

There are two compute-heavy parts in these algorithm. First, random edge generation
(procedure GerRandomEdge()). To speed up random edge generation, parallel threads are
used for the each generated edge. Second, property change calculation (procedure
CalculatePropertyChange()). More advanced technique is required for parallelization of
this routine. Edges to remove and add are available at the point of computation, and it is
necessary to calculate count of added and removed triangles as a result of performed switches.
This operation is local and requires to traverse only neighbors of nodes participating in switch
and appropriately handle repeating triangles. All nodes proceed parallel, thus, this increases
overall speed of calculation. Beside the addition and the removal of the edges is done by
parallel threads and this also have a positive impact on process run-time.

Algorithm 3 presents the randomization without degree conservation. The randomiza-
tion step at the beginning uniformly selects random edge from the set of all edges of network
and removes it; after that, a disconnected pair of vertexes is selected and connected by an
edge. The pair should be selected uniformly from the set of all the available pairs of the
unconnected vertexes. To ensure this, the randomization algorithm should be slightly modi-
fied. Namely, after calculating the initial value of the property, it collects all pairs of the
unconnected vertexes at the moment. This is done by the quadratic traversing of all vertexes
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in the network and storing the necessary ones. OpenMP loop parallelization is used here for
the better performance. As in previous case, property change is calculated after performed
actions and the value is used for probability calculation. According to that value, decision is
made to continue or revert performed changes. Finally, algorithm returns the calculated delta
of property value.

Algorithm 3. Algorithm of Randomization Step without Degree Conservation
1: procedure RANDOMIZATION(G, 1)

2: trajectory<—|]

3 prop<— CalculateObservedProperty(G)

4 trajectory.append(prop)

5: pairs < FindAllUnconnectedVertexPairs(G)

6: while! Stabilized(trajectory) do
7.
8
9

Aprop < RandomizationStep(G, 1)
prop = prop + Aprop
trajectory.append(prop)

10:  return trajectory

12: procedure RANDOMIZATIONSTEP (G, 1)
13: e« GetRandomEdge(G)

14:  (v1,v2) < GetRandomPair(pairs)
15:  RemoveEdge(e,G)

16:  AddEdge(v1,v2,G)

17:  UpdateUnconnectedPairs(pairs)

18: A<« CalculatePropertyChange(G)

19:  p <« CalculateProbability(A, 1) > Calculated by Eq.
20:  if 0 == BernoulliDistribution(p) then

21: RevertChanges(G)

22: A0

23:  return A

The main part in this algorithm, which is exposed to the parallelization, is the property
change calculation routine. This, as in previous case, is a local procedure and a parallel
examination of neighbors of participating vertexes is enough to get result.

Table 2

System performance results

N 64 256 1024

p 0.1 03 [ 050709101 ]03]05]07]| 09 [01]03 0.5 0.7 | 09
R,k [0.023]0.025 0.031(0.050|0.053/0.050{0.190[0.370]0.690| 1.390 | 0.92 | 4.70 | 11.75 |29.20 | 59.50
R, h [0.012]0.014 ]0.016]0.018|0.020 |0.040|0.120 {0.240]0.340| 0.390 | 0.84 | 2.50 | 6.60 |12.70 |17.40

System Performance. To perform analysis of developed system performance,
Erdos-Rényi random graph model was used. In put networks were constructed with the
following parameters: N = 64; 256; 1024 and p = 0.1; 0.3; 0.5; 0.7; 0.9. Tab. 2 presents
appropriate run-times for two cases of randomization step for the generated networks with
IT(G,u)] = 5-10° and #; shows the run-time in the cases of evolution with degree
conservation and #, in the case of degree conservation failure. The results were obtained
on Intel Core i7 processor with averaging run-times of over 20 runs with same parameters.
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